Tutorials — Macroscopic superpositions to test quantum gravity
International school on Quantum Sensors for Fundamental Physics QSFP 2021

Welcome to the tutorials!
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What is the gravitational field generated by a quantum system?

The material is split into 4 exercises:

1. Basic interferometry and gravitational phases

2. Gravitational field of a Superposition

3. Decoherence in matter-wave interferometers with nanoparticles
4. State-of-the-art-experiments and future prospects

Parts (a),(b) of each exercise contains the core material, while part (c) is given as a bonus exercise.
If you have any questions feel free to contact us at marko.toros(at)glasgow.ac.uk, julen.pedernales(at)gmail.com,
a.pontin(at)ucl.ac.uk, giulio.gasbarri(at)uab.ac.



1) BASIC INTERFEROMETRY AND GRAVITATIONAL PHASES

We consider a non-relativistic mass m with initial kinetic energy Ey = p3/2m in three different situations depicted
in Fig. 1. The key message of this exercise is that the interferometric phases are due to potential differences.
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Figure 1: (a) Potential difference V' induces a momentum change po — po + Ap. (b) Interferometer in the Earth’s
gravitational field (g is the gravitational acceleration). (c) Interferometer on a rotating platform rotating with angular
frequency w.

(a) The particle traverses a potential difference V. Starting from energy conservation
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and assuming V' is such that the corresponding momentum change is small (i.e. p; — pp = Ap < pg), compute
the relative change in momentum
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(b) The phase difference A¢ between the paths indicated by purple/green arrows can be computed as a
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where [ is the length of the horizontal segment (the phase difference arises from the gravitational potential
difference V' = mgh). Using Eq. (2) compute the Collella-Overhauser-Werner phase difference:
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where the area of the interferometer is A = lh, and the matterwave wavelength is A = 27h/(po).

Adcow = X A, (4)

(c) The phase difference A¢ between the paths indicated by purple/green arrows can be again computed using
Eq. (3). The potential difference is given by V = w - L, where L = r X pg is the angular momentum. Using
Egs. (2) and (3) compute the Sagnac phase difference:
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where the area of the interferometer is A4 = 7r2. Find the condition for Adcow/Adsagnac ~ 1.

AQbSagnac = X Aa (5)
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2) GRAVITATIONAL FIELD OF A SUPERPOSITION

We consider a non-relativistic particle s; with mass m; in a spatial superposition state:

ey +18)
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where (x1]a) = §(x1 —d) and (z1|8) = §(z1 + d). We suppose for simplicity that |¢1) will not evolve thus providing a
constant source for the gravitational field. We further consider a test particle sy with mass mso in an initial gaussian
state centered in the origin, i.e.

|
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Figure 2: The particle s1, which generates the gravitational field is in a superposition of the states o and 3. Particle
s2, which is used as test mass, is in a localized state located in the center.

(a) Quantum Case: The total gravitational field is a linear combination of gravitational fields produced by the states
a and B. (b) Semi-classical treatment of gravity: the total gravitational field acting on ms is produced by the mass

density m (Ja(z)|? + |8(2)[?)/2.

(a) In a quantum scenario we would expect the gravitational field to be in a superposition of the gravitational fields
generated independently by |a) and |3). Suppose the initial state is |¢1)|d2).

1) Convince yourself that the state after the evolution will take the following form:
1
|Pag:t) = 7 (I¢a: D)) + 105, )18)) , (8)

where the states of the test particle satisfy the following dynamics:
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Hint: the state |¢,) feels the gravitational potential generated by |a) while the state |¢g) feels the gravitational
potential generated by |3).

2) Assuming that the gravitational potential can be approximated as
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Verify that the states |¢q,t) and |¢g,t) are localized around the following positions
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while the mean value of the total state is still zero, i.e.
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In a semi-classical scenario the gravitational field is not allowed to be in a superposition of two different config-
urations. Let us suppose the gravitational field is sourced by the mass density m1|¢1(x)|>.
Assume the initial state of the test and source particle to be again |¢1)|d2).

1) Convince yourself that, after the evolution, the state will take the following form:
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and |¢2,c,t) is governed by the following dynamical equation:
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where Vy(z) = 3 (Gute + Gruimz),
2) Under the assumption in Eq. (10) show that:
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Under this approximation can be shown that the state at time t reads
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Show that:

<¢cl7t|f2‘¢cl7t> =0. (].9)



(c¢) In the scenario described in Fig. 2, measuring position of the test particle is not enough to discriminate between
a quantum and a semi-classical scenario but measuring variance of the test particle maybe help on testing the
two hypothesis. Show that:
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3) DECOHERENCE IN MATTER-WAVE INTERFEROMETERS WITH NANOPARTICLES

Consider the one dimensional interferometric loop in Fig. 3a. The center of mass of a particle of mass m is prepared
in a pure quantum state described by a Gaussian wave packet of width xg and zero momentum. The wave packet is split
in two components, which travel in opposite directions with constant momenta —k and k until they reach a separation
distance d at time 7/2. At this moment, the wave packets are reflected and their momenta are inverted such that they
now travel towards each other. At time 7, when the centers of the wave packets overlap, we measure the position of
the particle. If the process is coherent, an interference pattern will be observed in the probability distribution of the

z2 =
center of mass position, which is of the form P(z) = &e 7% cos?(£2 + ¢), where k = ‘k , 02 = 23[1+ (xf;m)z], N
0

is a normalization constant and ¢ is a relative phase picked up between the components of the superposition as they
travel different arms of the interferometric loop.
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Figure 3: Matter-wave interferometer

a) To reconstruct the probability distribution, the experiment needs to be repeated a statistically significant number
of times. Consider that the experiment is not initialized in a pure state of 0 momentum, but that it contains a finite
temperature. One way to treat the problem is to consider that in each run of the experiment the initial wave packet
will have a velocity v picked at random from a Boltzmann distribution according to the particles temperature. In one

m'u2
dimension, for a free particle of mass m such a distribution is given by up(v) =, /%ei 2K8T  where Kpg is Boltz-

man’s constant. Compute the effect of the initial temperature T' of the center-of-mass motion on the visibility of the re-
a? (z—a)? 2k207 0>
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constructed interference pattern. [Hint: [dae >72e” o2 cos’[k(z —a)] = Ae *CiteD[1+e it cos(ﬁ’f; x)],

with A a constant]

b) Another source of noise that can erase the interference pattern is given by the interferometric phase ¢. If the
two arms of the interferometric loop observe different fields due to the presence of some uncontrolled environment,
a relative phase will build up and this will shift the interference pattern. Shot-to-shot fluctuations of this phase will
again reduce the visibility of the reconstructed interference pattern. Consider that the particle has an electric dipole
moment given by the presence of a negative charge at the center of the particle and its compensating positive charge
at the surface of the particle, as shown in Fig. 3b. Estimate the phase generated by a single electron sitting in the z
axis at some distance D from the interferometer. For simplicity, you can assume that D > d, R such that the field
can be linearized across the size of the interferometer and the dipole can be assumed to observe a uniform electric
field. You can also assume that the dipole is aligned with the electric field. [Hint: Remember the energy of an
electric dipole moment p'in an electric field E is given by U = —ﬁE, and the phase picked by each component of the
superposition can be computed as the time integral of its energy ¢ = [ dtU(t)/h. |

c) Consider that the particle has a radius of R = 250 nm and that we are able to prepare it in a superposition of
distance d = R, in a time 7 = 0.5 s. What is the minimal volume around the interferometer that we need to ensure

is free of any electrical charges? [Hint: In S.I. units e~ ~ —1.6-107"? C, A~ 1.05- 107 J 5, 1= ~9-10° l;%g;




4) STATE-OF-THE-ART-EXPERIMENTS

This section will focus on two experimental results achieved in the past year. The first is the cooling to the motional
ground state of a mesoscopic silica nanoparticle in an optical tweezer [h]. The second is a direct measurement of the
gravitational attraction between two mg scale gold spheres [i]. The objective here is to perform order of magnitude
estimations to get a feeling of the typical difficulties in these experiments.
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Figure 4: (a) Schematic overview of the ground state cooling experiment (taken from Ref. [h]). An optical tweezer
provides a 3D trapping potential for a spherical silica nanoparticle. The motion along the x-axis is cooled by the
interaction with an optical cavity. (b) The Cavendish-like torsional balance use for the direct measurement of the
gravitational coupling between m; and ms. The Newtonian force is modulated by changing the separation between
the two masses.

(a) The levitated oscillator of Ref. [h] is a silica nanosphere of radius Rg = 70nm and density p = 1850Kg. Let’s
consider a one dimensional harmonic oscillator with a trap frequency of w,, /27 = 160kHz. At the beginning of
the experiment, in absence of cooling, the oscillator is in a classical thermal state.

1) From the equipartition theorem calculate the position variance o2 and the associated displacement rms.

2) How does it compare to zero point fluctuations xzpr = 1/ h__9

2Mmwoem, *
3) Calculate the mean thermal occupation ny, in the high temperature limit.

4) The main sources of decoherence are due to thermal noise and photons recoil. The former is due to collisions
with the background gas which generates a damping;:

Pressure [mbar]
pRs

Ygas = 0.8 (22)

The fluctuation dissipation theorem connects this damping to a force noise. Expressed in terms of a heating
rate this is given by I'yi, = Ygasnin-

Photon recoil is due to scattering of the trapping field which generates a force F ~ hkngs. = Ps./c. Here, ng is
the number of scattered photons and Py, is the scattered power. As for the thermal noise this force is stochastic
and its heating rate can be calculated to be:

2w P
5 Wy, M 2

Cree = (23)

where w; is the trapping field angular frequency.

Assuming a pressure of 10~" mbar and a scattered power P, = 10 uW (A =1064nm) calculate I'yy, and T'yec.



5) In absence of cooling the evolution of the mean energy can be predicted by the following equation (Fokker-
Planck):

= —Ygasn + » T (24)

In the short time scale limit calculate the average number of oscillations in the time it take for n to increase by
one assuming n(0) =n, < >, I'i/Ygas-

(b) The torsion balance in Fig. 4 can be described as an harmonic oscillator with a resonance frequency w, /27 =
3.6 mHz and mechanical quality factor @ = w,,/v = 5. The Newtonian force between the test mass m; ~ 90 mg
and the source mass my ~ 90 mg is modulated by changing the separation of the mass centers from 2.5 mm to
5.8 mm.

1) Calculate the expected force at the smallest separation;

2) To get an idea of the effect of the surrounding gravitational disturbances calculate how far has to be an
experimenter (say 80Kg) to generate a similar force. What about a nearby train (say a carriage weighting
15000 Kg)?

3) Assuming the oscillator is thermal the minimum detectable rms force is given by Fin, = v/4kpTmesryBW,
where T is the temperature of the environment, kp is the Boltzman constant, m.s; ~ 2m; is the effective
mass of the torsion balance, v the damping and BW is the measurement bandwith. Assuming a measurement
bandwidth of 0.1 mHz (roughly 3 hours) what is the signal to noise ratio?

4) Among the disturbances that have to be considered the Casimir force is one of the most problematic for small
separations. For a metallic sphere near a conductive plane the Casimir force is given by:

_ RskpT((3)
Feas = 86@ (25)

where ((3) ~ 1.2 is the Riemann Zeta function Rj is the sphere radius and ds = 250 um is the sphere-Faraday
shield separation. One can verify that for the current configuration F..s is negligible when compared to the
gravitational attraction.

However, it can become dominant for future experiments aiming to replicate the measurement with test masses
approaching the Planck mass (m, ~ 2.2 x 1078 Kg). Assuming a symmetric configuration, masses separation
r = 4Rg and ds = 2Rg calculate the radius at which the Casimir force equals the Newtonian force (gold density
p = 19000 Kg/m?). How does the resulting mass compare to the Planck mass?

Constants:
kp=1.38-10"%J/K
h=1.05-10"%*7Js
G =6.67-10"1" Nm? /kg?
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