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1 Portal Lagrangian’s and the variation of fundamental

constants

The Lagrangian (or Lagrangian density) and Hamiltonian are both important in classical
and quantum field theory. In Quantum field theory, the Lagrangian density has a few big
requirements: Terms must be functions of only the field(s) or first derivative of the field(s)
(similar constraint on the classical Lagrangian), and the functional form of the Lagrangian
must be invariant under boosts and rotations. The Lagrangian density for a real valued
scalar field reads

L =
1

2
c2∂µφ∂µφ−

1

2
m2c4φ2, (1)

with the field (φ) and mass (m) having units of energy (eV).
Similarly to classical theory we find the Equations of Motion (EOM) or the ”Euler-

Lagrange equation”. In quantum field theory the Euler-Lagrange equation (relativistic)
reads

∂µ

(
∂L

∂(∂µφa)

)
=

∂L
∂φa

, (2)

with the subscript ’a’ enumerating over other possible fields involved. This leads to the
famous ”Klein-Gordon equation” (left for the reader to derive),

∂µ∂
µφ+m2c2φ =

(
∂2

∂t2
−∇2 +m2c2

)
φ = 0. (3)

In Quantum Electrodynamics (QED) the Lagrangian density reads

LQED = Ψ̄
(
i~cγµ∂µ −mc2

)
Ψ− qΨ̄γµΨAµ −

1

4
FµνF

µν , (4)

with Ψ representing the bispinor (fermions) fields, γµ being the gamma matrices, Aµ is the
vector potential, Jµ is the current density, and Fµν is the Faraday Tensor.

Problem 1.1. When dealing with exotic physics beyond the standard model, the hypothesized
interaction Lagrangian between standard model fields and the exotic field(s) is simply added
to Eq. (4). Suppose the exotic field is described by a linear scalar portal with Lagrangian
density,

Lint = −1

4
ΓφFµνF

µν . (5)
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Here Γ is the coupling constant that quantifies the exotic field interaction strength.
What is the new Lagrangian density?

Problem 1.2. Now suppose our exotic field is a dark matter field such that our interaction
Lagrangian assumes a quadratic scalar portal,

Lint = −
(

Γfmfc
2Ψ̄fΨf +

1

4
ΓαFµνF

µν

)
φφ∗. (6)

Here Γf and Γα are the coupling constants that quantify the DM interaction strength to the
fermions and the fine structure respectively, mf is the mass of the fermions, Ψf and Ψ̄f are
the standard model fermion fields.

What is the new Lagrangian density?

Problem 1.3. Consider the Dirac Lagrangian density

LD = Ψ̄
(
i~cγµ∂µ −mc2

)
Ψ. (7)

Now suppose we have a Lagrangian for an exotic field given by a quadratic scalar portal,

Lint = −Γmc2Ψ̄Ψφφ∗, (8)

with φ being a scalar field, Ψ is the Dirac field (electrons), and Γ being the coupling constant.
The Dirac Hamiltonian is given by

HD = cα · p+ βmc2 + Vint, (9)

i~
∂

∂t
Ψ = HDΨ.

Here α is not the fine structure constant but are matrices given by,

γ0γ
i =

(
1 0
0 −1

)(
0 σi
−σi 0

)
=

(
0 σi
σi 0

)
= αi (10)

Given the interaction Lagrangian density what is the effective potential Vint that is added
to the Dirac Hamiltonian? Why does this lead to a variation of the fundamental constant
m?

Hint:

Consider the Euler-Lagrange equations, and multiplying by γ0 to get to the Hamil-
tonian form in Eq. (9)

2 Sensitivity of networks of quantum sensors to exotic

fields: angular and velocity resolutions

To detect exotic fields such as dark matter or exotic low-mass fields, typically networks of
quantum sensors such as atom interferometers, magnetometers, or atomic clocks are used.
Application specific Templates are created to reflect the exotic physics of the interaction
with the standard model and compared to resulting data. As an example, suppose the
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exotic parameters of interest are direction (n̂) and speed (v). Then we need to generate
templates that span the continuous parameter space of directions n̂ and speeds v. This
leads to the question of angular and velocity resolutions of the network. In Fig. 1, we have
an example template for a dark matter transient propagating through a circular network
in the direction towards sensor 1. Here the diameter of the quantum sensor network is D.
The angular resolution is roughly the ratio of the temporal resolution ∆t to the field burst
propagation time through the quantum sensor network D/v.
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Figure 1: Construction of the template corresponding to a vertically-oriented line sweeping
from the left (polar angle θ = 0). Sensor 6 is affected first and sensor 1 — last.

Problem 2.1. Suppose we consider two different line sweeps in Fig. 1 with a constant speed
v but differ by the incident direction: θ and θ

′
= θ + ∆θ. For small tilt angles ∆θ both line

sweeps will result in the same template. What is the critical value for ∆θ for which we will
generate a new template?

Hint:

Consider each sensor in the center of each line sweep and rotate the circular
network ∆θ about the center to generate a new template.

Problem 2.2. Now suppose we consider two different line sweeps keeping the direction θ of
the exotic field constant but differ by the incident speed: v and v

′
= v + ∆v. The number of

line slice sweeps for velocity v is given by

D

v∆t

. (11)

The number of line sweeps for v
′

is given by

D

(v + ∆v)∆t

. (12)

What is the critical value (velocity resolution) ∆v that will result in a new template?

Hint:

Consider the difference between the two number of line sweeps.
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