1

Do you think that by modifying Newtonian dynamics to something like Gen-
eral Relativity one could explain the anomalies in the orbit of Uranus in a
viable way? (without introducing Neptune)

2

A very important result in dynamical systems is virial theorem. Can you
reproduce it for Newtonian dynamics? ( Show that the time average satisfies
2(T) = —(V) where T = Y m;v?/2 is the kinetic energy of a collection of parti-
cles, V=3, . Vij(r) = >_,_; Gmym;/r;; the potential energy, 2 Jydt...=(.) and
we take the limit of large 7)

Hint: Start with the quantity
D= §iF (1)

where we are summing over number of particles. Take the time derivative, and average
over time. Assume that D does not grow with time in the situation of equilibrium

3

We know from the lectures that DM is almost collisionless. Can you estimate
a bound on the cross-section by assuming that the typical clusters do not in-
teract when they collide? (assume the energy density of DM is ~ GeV/cm?
and recall that the typical size a cluster is ~ few Mpc. Similarly, you can
assume that the typical time between collisions should be larger than the
crossing time of clusters. Assume this time to be 1 Gyr. You can leave the
estimate in terms of the velocity in this second case).

Hint: The mean free path in a medium of n number density and given a cross section
o s

bgp ~ 1/ (no) (2)
while the typical time between collisions is (we don’t use it)
Lmgp V- (3)



4

You can become an cosmologist for one day. Go to the webpage https:
//lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm. In the first page you can
choose different values for (,h?. Check how if one increases this value (com-
pensate it by reducing the value of Q.h%, which is the value of the DM com-
ponent such that €, + Q. is the same as before. If you click the ‘Transfer
Functions’ box you also get the power spectrum. Plot the C; (data from
‘camb_xxxxx_scalcls.dat’ shown as LinLog) and compare by eye with https:
//wiki.cosmos.esa.int/planckpla2015/index.php/File:A15_TT.png. If you have
asked for ‘Transfer functions’ you can also loglog plot the power spectrum
file ‘camb_xxxxx_matterpower_z0.dat’ and see how it changes.

5]

Find the minimum value of dark matter mass allowed by quantum mechan-
ics for bosonic and fermionic candidates. You need to fit the DM candi-
date to dwarf spheroidals (r ~kpc, typical velocity ~ 10~*c and mean density
~ 5GeV/cm?)

Hint: As we discussed during the lectures, the idea for baryons is that the uncertainty
principle tells us the de Broglie wavelength allowed given a typical momentum (more
precisely, the uncertainty in momentum, which shouldn’t exceed the momentum that is
required for these structures to be bounded)

Hint: For fermions, the idea is that you need to fit the fermions in the free states that
live in a halo of certain maximum size and maximum momentum. Assuming a box in
phase space of size kpc and 10~*m, compute the number of degrees of freedom available,
and fill them up to accommodate all the mass of the galaxy.

6

What’s H, in years? Hy ~ 0.7km/s/Mpc

7

Compute the yield for a relativistic and non relativistic species. Estimate
the yield that we need in order to reproduce the correct DM relic abundance
Qh? ~0.1


https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
https://wiki.cosmos.esa.int/planckpla2015/index.php/File:A15_TT.png
https://wiki.cosmos.esa.int/planckpla2015/index.php/File:A15_TT.png

8

Show that in terms of Y, the equation of evolution reads

dy

yri —s{ov) (Y? - Ye%;) : (4)

9

Using Boltzmann equation, expressed in terms of the yield Y = n/s, which
reads
dy Aov)
dr x?
define the quantity AY =Y —Y,, and show that, for non-relativistic particles,
the solution can be approximated as (z; is the time of freezeout at which

T ~ H)

(Y2 - Y:ezq) ) (5)

dYeq

AY:—;;#;@, 1<l‘<<l’f

(6)

Ay, =Ye=—F"2L—~  z>ux; (when Y >Y,,)
/\<a+zbg>

For the second part assume that the thermally averaged annihilation cross
section can be expanded in powers of 1/x as (ov) =a+ g,

Hint: For early times, 1 < x < x5 , the yield follows closely its equilibrium, Y ~ Y,
and we can assume that AAY /dx = 0, and just follow the algebra

Hint: For late times, x > xy, we can assume that Y > Y., and thus AY, ~ Y.
You need to integrate from xy to xo. You can neglect the Yy int he final formula

10

IIn the Early Universe, neutrinos remain in equilibrium through the process
et+e” «— v.+7,. Using that both the electron-positron and neutrino popula-
tions are relativistic and therefore their number density scales as n ~ T°, the
decoupling temperature of neutrinos can be roughly estimated by equating
the annihilation rate I' = n(ov) and the Hubble expansion rate H = /87Gp/3.
The energy density of the Universe scales as p ~ T'. Show that neutrinos
decouple at approximately 7'~ 1 MeV.



Hint: Neutrinos keep in thermal equilibrium through interactions with electrons through
the processes e~ + e* «— v, + U, and ¢~ + v, < ¢~ + V.. When neutrinos decouple
there are in the thermal bath electrons, positrons, photons and the three neutrinos and
antineutrinos, g, = 10.75 (check it).

Using dimensional arguments, the cross section of these processes at a temperature T
(which defines the c.o.m. energy) is approzimately o = G%T?, where Gp = 1.17 x 107°
GeV .

11

From the question above, we know that when neutrinos decouple, they are
still relativistic. The other relativistic species in the thermal bath are elec-
trons, positrons, photons and the three neutrinos and antineutrinos. With
this information the relic density of neutrinos in the Universe today can be
estimated as a function of the neutrino mass. .

Hint: To do that, follow eq (56) of the notes, and substitute ges¢ by the corresponding
value for two helicities.

12

What’s the relic density of a species of mass m that is kept in equilibrium
with SM particles through 3p,, — 25,/ processes assuming it decouples at
T ~ m? (follow the same steps as 3.3.2 of the notes). Which value of the
mass generates the observed DM abundance? (assume (ov) ~ o®/m®, where
a is a dimensionless coupling)

Hint: The rate of interaction is should now be proportional to the flux squared ~ n?.

So we expect
I ~ n?{ov) ~ m?/Mp, (7)

13

Direct detection. What is the minimum velocity needed v,, for a WIMP with
mass m, to produce a 10 keV recoil in a nucleus of mass my Which cross-
sections will generate one event/day in a 1 T detector of targets of 100 GeV?



14

Boost the DM distribution to the Solar System frame and compute v

15

Consider two massive bosonic fields coupled with Lagrangian
1 1
L= 3 10" Py — migt + §8u¢28“¢2 — m3d% + g b (8)

Assume that ¢ has a background value ¢;. Show that the fluctuations over
this background satisfy (in Fourier space)

(w? = k* —mi)dd1 + g10¢s = 0, (w? = k* —m3)dps + gp1061 = 0. (9)
If the system starts with initial conditions d¢; = ¢y and 0¢; = d¢ = ¢, = 0,

compute the value of )¢, as the wave propagates in the limit where m; = my
(you can do it in the limit of small g).
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