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A frame bundle 𝜋 ∶ 𝐹 𝐸 → 𝐵 is a principal 𝐺𝐿! 𝑑;ℝ -bundle 

Typical fibre 𝐹 𝐸 |" is the space of all frames 𝑒#(𝑥) on 𝐸|" for 𝑥 ∈ 𝐵

Let 𝐸 be a vector bundle over 𝐵

Consider a base manifold 𝐵 as our spacetime

𝑒# =
𝑒$
⋮
𝑒%

𝑒# ∈ 𝐹 𝐸 : 𝑒# ⊲ 𝐺𝐿! 𝑑;ℝ ∀ 𝐴 ∈ 𝐺𝐿! 𝑑;ℝ : 𝑒# ⊲ 𝐴 = 𝑒&𝐴 #
&

Given a tangent bundle 𝑇𝐵

𝑒# ⊲ 𝐺𝐿! 𝑑;ℝ induces  𝐺𝐿! 𝑑;ℝ ⊳ 𝑣#, ∀ 𝑣#∈ 𝑇𝐵 via an inner product 𝑒#𝑣#



Choose a metric 𝑔#& on 𝐵 : 𝑔#& = 𝑒 #
' 𝑒 &

( 𝜂'(

𝑒! ⊲ 𝐺𝐿" 𝑑;ℝ induces 𝐺𝐿" 𝑑;ℝ ⊳ 𝑔!#

Naturally, ∃ 𝑁 ∈ 𝐺𝐿! 𝑑;ℝ ∶ 𝒆𝒂 ⊲ 𝑵 = 𝒗 ⊳ 𝒆𝒂 for some 𝑣 ∈ 𝑆𝑂 𝑑;ℝ

𝜼𝜶𝜷 = 𝒅𝒊𝒂𝒈 𝟏,… , 𝟏 is the 𝑺𝑶 𝒅;ℝ invariant ⇒ induced 𝑆𝑂 𝑑;ℝ ⊳ 𝑒 !
&

⟹𝑵 ⊳ 𝒈𝒂𝒃 = 𝒈𝒂𝒃
⟹metrics on 𝐵 form 𝑺𝑶 𝒅;ℝ cosets

A choice of metric 𝑔#& on 𝐵 is a choice of coset [𝑔#&] = 𝑔#&(𝑆𝑂 𝑑;ℝ )
⟺ Reduction of the structure group on 𝑻𝑩 from 𝑮𝑳! 𝒅;ℝ to 𝑺𝑶 𝒅;ℝ .

∀ 𝐴 ∈ 𝐺𝐿" 𝑑;ℝ : 𝐴 ⊳ 𝑔 = 𝐴'𝑔𝐴



space of degrees of freedom of the metric which you can tune 
in the theory to fix your spacetime geometry 

Consider a bundle 𝐿 → 𝐵 with ∀𝑥 ∈ 𝐵: 𝐿|( ≅
)*! +;ℝ
./ +;ℝ

⟹ 𝓜≅ 𝑪0(𝑳)

⟹ use group theory to study geometry pointwise:
⟹ a metric on 𝓜
⟹ geodesics
⟹ notions of distance on the moduli space

Moduli space ℳ :
space of all metrics 

⟺

𝓜R
"
≅
𝐺𝐿! 2;ℝ
𝑆𝑂 2;ℝ ≅ ℝ!×

𝑆𝐿 2;ℝ
𝑆𝑂 2;ℝ

Example: 𝑑 = 2:



𝐸 (≅+,-%# 𝑇𝐵 ⊕ 𝑇∗𝐵) as a generalized tangent bundle

Generalized Geometry : instead of taking 𝑇𝐵 and 𝑇∗𝐵 separately, we propose

∀ 𝑉" ∈ 𝐸: 𝑉"= #!
$!

where morally 𝑣% ∈ 𝑇𝐵 and 𝜆% ∈ 𝑇∗𝐵

In supergravities, the objects are fields and forms so why not bunch them all together. This allows us to 
make more of these objects geometric…

Possible structure groups : 𝐺𝐿 2𝑑;ℝ ⊃ 𝑂 𝑑, 𝑑;ℝ ⊃ 𝑂 𝑑;ℝ ×𝑂(𝑑;ℝ)

𝑂 𝑑;ℝ ↪ 𝑂 𝑑, 𝑑; ℝ ∶ 𝐴 → 𝐴 0
0 𝐴

𝑂 𝑑;ℝ ↪ 𝑂 𝑑, 𝑑; ℝ ∶ 𝐴 → 0 𝐴
𝐴 0

𝑉/=
𝑣0

𝜆0
→

𝐴 -
0 𝑣-

𝐴 0
- 𝜆-



FYI : 𝐺𝐿 2𝑑;ℝ ⊃ 𝑂 𝑑, 𝑑;ℝ ⊃ 𝑂 𝑑;ℝ ×𝑂(𝑑;ℝ)

To describe a supergravity, we want a reduction of the structure group to 𝑶 𝒅;ℝ ×𝑶(𝒅;ℝ)
acting on 𝑬(≅𝑲𝒊𝒏𝒅𝒂 𝑻𝑩⊕ 𝑻∗𝑩)

The 𝑂 𝑑;ℝ ×𝑂(𝑑;ℝ) invariant :  𝑂 𝑑;ℝ ↪ 𝑂 𝑑, 𝑑;ℝ ⇒ 𝕀+ ↪ 𝛿12 =
𝕀+ 0
0 𝕀+

The 𝑂 𝑑, 𝑑;ℝ invariant : 𝐽 = 0 𝕀+
𝕀+ 0

Use 𝐽 to define an 𝑂 𝑑, 𝑑;ℝ -structure (𝐸, 𝐽) by a choice of metric

𝒩34 = 𝔢 5
1 𝔢 6

2 𝐽12∈ 𝒩34 ≈ 𝑂 𝑑, 𝑑;ℝ

Use 𝛿 to define an 𝑶 𝒅;ℝ ×𝑶(𝒅;ℝ)-structure (𝑬, 𝑱, 𝜹) by a choice of metric

ℋ34 = ℇ 5
1 ℇ 6

2 𝛿12∈ [ℋ34]

Moduli spaceℳ = 𝐶5(𝐿) :    ∀𝑥 ∈ 𝐵: ℳ|" ≅
6 %,%;ℝ

6 %;ℝ ×6(%;ℝ)



We use generalized geometry to describe supergravities where the objects in the SUGRA 
map to geometric object in the generalized geometry.

ℋ=> has 𝑑? = $
?
𝑑 𝑑 + 1 + $

?
𝑑(𝑑 − 1) degrees of freedom

𝑔 ∈ 𝐺𝐿 𝑑;ℝ : 𝑔@ = 𝑔 𝐵 ∈ 𝐺𝐿 𝑑;ℝ : 𝐵@ = −𝐵

Why do we care?

Without too much effort, add a scalar 𝜙 (conformal factor) ”size” of ℋ=> (determinant). 

⇛ ℋ=> (𝑔, 𝐵, 𝜙)(𝑥) and ℳ is spanned by the 𝑁𝑆 − 𝑁𝑆 bosonic field 𝑔, 𝐵, 𝜙 of the SUGRA 

∀𝑥 ∈ 𝐵: ℳ R
"
≅ ℝ!×

𝑂 𝑑, 𝑑;ℝ
𝑂 𝑑;ℝ ×𝑂(𝑑;ℝ)

If anyone tells you 
this in a seminar they 

are lying



Simple application
The generalized distance conjecture of 
the swampland program:

Δ is a “distance” accounting for the distance travelled on the metric moduli space and a change in 
all non-trivial fluxes of the SUGRA. This is a hard computation!

Dieter Lüst, Eran Palti, and Cumrun Vafa , 𝐴𝑑𝑆 and the 
Swampland, Physics Letters B 797 (2019) 134867

But these can all be metric moduli of the generalized 
metric in generalized geometry. Just need to find 

geodesics on 𝓜.
Much easier!



Let’s see what happens…


