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Consider a base manifold B as our spacetime AﬂL\A
Let E be a vector bundle over B

A frame bundle w : F(E) — B is a principal GL*(d; R)-bundle <e1>
eq =

Typical fibre F(E)|, is the space of all frames {e,(x)} on E|, for x € B

e, EF(E): e, 2 GLT(d;R) VAEGL (d;R):e, < A =e A",

Given a tangent bundle TB
e, < GL*(d; R) induces GL*(d;R) = v%, V v®€ TB via an inner product e, v¢



Choose a metric g,;, on B : g, = e“aeﬁbnaﬁ

e, < GLT(d;R) induces GL™(d;R) & ggp
VAEGL (d;R): A g=ATgA

Nep = diag(1,...,1) is the SO(d; R) invariant = induced SO(d; R) = e,

Naturally, 3N € GL*(d;R) : e, < N = v > e, for some v € SO(d; R)

= N> Gapb = Gab
= metrics on B form SO(d; R) cosets

A choice of metric g, on B is a choice of coset [g,5] = 945 (S0(d; R))
< Reduction of the structure group on TB from GL*(d; R) to SO(d; R).




Moduli space M : ~, Space of degrees of freedom of the metric which you can tune
space of all metrics in the theory to fix your spacetime geometry
_ GLY(&;R)

Consider a bundle L - B withvVx € B: L|, = M =C”(L)

S0(d;R)

= use group theory to study geometry pointwise:
= a metricon M
— geodesics

Example: d = 2: = notions of distance on the moduli space

SO (e, l)/SOC‘L)

SO(t'l)/QO(?.)
' @ $0C. D402 \ %
1/ ak .
ﬁ / E /;;*

GLT(2; R) SL(2; R)
| = ~ R X ———=
x SO(2;R) S0(2;R)




Generalized Geometry : instead of taking TB and T*B separately, we propose

E (Zkinaa TB © T*B) as a generalized tangent bundle

vVMeE: VM= (Z:) where morally v™ € TB and A,,, € T*B

In supergravities, the objects are fields and forms so why not bunch them all together. This allows us to
make more of these objects geometric...

Possible structure groups : GL(2d;R) 2 0(d,d; R) 2 0(d; R)x0(d; R)

= (2n) (22
Am An m)'n

0(d;R) © 0(d,d;R) : A - (81 ’3)

O(d;R)>0(d,d;R): 4 - (61 0)



To describe a supergravity, we want a reduction of the structure group to 0(d; R)x0(d; R)
acting on E(Zkinga TB D T*B)

FYI: GL(2d; R) © 0(d,d; R) o 0(d; R)x0(d; R)

The 0(d,d; R) invariant : ] = {0 Hd}

I, 0
Use J to define an 0(d, d; R)-structure (E,]) by a choice of metric

Ny = e4eP) Jap € [NVyy] = 0(d, d; R)

The 0(d; R)x0(d; R) invariant: O(d;R) © 0(d,d;R) =1, © 6,45 = (H(;i ]10>
d

Use § to define an 0(d; R)x0(d; R)-structure (E,J, 8) by a choice of metric

Hy = 8AISB] 845 € [Hy)]

0(d,d;R)

Moduli space M = C®(L): Vx € B: M, = v o




Why do we care?

We use generalized geometry to describe supergravities where the objects in the SUGRA
map to geometric object in the generalized geometry.

H;; has d* = %d(d +1) + %d(d — 1) degrees of freedom

gEGL(d;R):g" =g / \‘ B € GL(d;R): BT = —B

If anyone tells you
this in a seminar they
are lying

A\ Without too much effort, add a scalar ¢ (conformal factor) "size” of #;; (determinant).

= Hj; (9, B, )(x) and M is spanned by the NS — NS bosonic field (g, B, ¢) of the SUGRA

vx e M| =Rx— L ER)
e = 0@ R)X0(d; R)




Slmple application We are now ready to state the generalized distance

The genera[ized distance conjecture of conjecture: Consider the non-compact space to be an
) Einstein space, i.e. AdS, Minkowski, or dS (if it exists).
the swamp land program: Then for large distance variation in fields, we get a light

tower of states in the Einstein frame of the external ef-
Dieter List, Eran Palti, and Cumrun Vafa , AdS and the fective field theory, whose mass scale in Planck units is

Swampland, Physics Letters B 797 (2019) 134867 given by

where a ~ O(1).

Ais a “distance” accounting for the distance travelled on the metric moduli space and a change in
all non-trivial fluxes of the SUGRA. This is a hard computation!

But these can all be metric moduli of the generalized
metric in generalized geometry. Just need to find
geodesics on M.

Much easier!



Let's see what happens...



