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Quantum Riemannian Geometry 
Differential calculus

• An algebra  over a field 


• An -bimodule   


• A linear map 


• 


• Ker ,   


•

A K

A Ω1

d : A → Ω1

Ω1 = span{a ⋅ db ∣ a, b ∈ A}

d = k ⋅ 1A k ∈ K, 1A ∈ A

d : Ωn → Ωn+1

  





Surjectivity


Connectedness (Optional)


 

(a ⋅ ω) ⋅ b = a ⋅ (ω ⋅ b), a, b ∈ A, ω ∈ Ω1

d(ab) = (da) ⋅ b + a ⋅ (db)

d2 = 0



Geometrical Structures on a differential calculus (  )A, Ω1, d

 








g ∈ Ω1 ⊗A Ω1

(, ) : Ω1 ⊗A Ω1 → A

∇ : Ω1 → Ω1 ⊗A Ω1

σ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1

Metric


Inverse metric


Connection


Braiding map

∇(ω⊗ η) = ∇ω⊗ η + (σ⊗ id)(ω⊗∇η)

∇(fω) = df ⊗ω + f∇ω ∇(ωf) = σ(ω⊗df) + (∇ω)f

rg = 0
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T∇ = ∧∇− dT∇ : Ω
1
→ Ω

2

Ricci ∈ Ω1 ⊗A Ω1 S = ( , )Ricci

QLC

i : Ω2 → Ω1 ⊗ Ω1



Quantization of ℤn

J. N. Argota-Quiroz and S. Majid, Quantum gravity on polygons and 
FLRW model,  Class. Quantum Grav. (2020) 245001 (43pp)

ℝ × ℤn



Algebra  A = ℂ(ℤn) Calculus Ω

(e±)2 = 0, e+ ∧ e− + e− ∧ e+ = 0, de± = 0

e±f = R± fe±, df = ∑
±

∂± fe±; (R± f )(i) = f(i ± 1), ∂± = R± − id8 J. N. ARGOTA QUIROZ AND S. MAJID

n − 1
01

i i + 1
2

a(i) = gi→i+1
b(i+1) = gi+1→i

a(0) = g0→1

b(1) = g1→0

Figure 1. A quantum metric on Zn is given by metric coe�cient
functions a, b or equivalently by directed edge weights gi→i±1.

as governed by one nonzero function a. For convenience, we define functions on Zn,

⇢ = R+(a)
a

.

Proposition 3.1. For n ≥ 3, there is a ∗-preserving QLC for any given edge-
symmetric metric (3.1) on ⌦1(Zn). This is the unique for n ≠ 4 and coincides with
the restriction to periodic metrics mod n of the unique such connection on Z in
[20], namely

�(e+ ⊗ e
+) = ⇢e+ ⊗ e

+
, �(e+ ⊗ e

−) = e− ⊗ e
+
,

�(e− ⊗ e
+) = e+ ⊗ e

−
, �(e− ⊗ e

−) = R2−⇢−1e− ⊗ e
−

with the geometric structures

∇e+ = (1 − ⇢)e+ ⊗ e
+
, ∇e− = (1 −R2−⇢−1)e− ⊗ e

−
,

R∇e+ = @−⇢e+ ∧ e− ⊗ e
+
, R∇e− = −@+(R2−⇢−1)e+ ∧ e− ⊗ e

−
,

Ricci = 1

2
�@−(R−⇢)e− ⊗ e

+ − @−⇢−1e+ ⊗ e
−� ,

S = 1

2
�−@−⇢−1

a
+ @−(R−⇢)

R−a � , �f = −R−⇢ + 1
a

(@+ + @−)f.
(For n = 4, there is a second ∗-preserving QLC given below.)

Proof. Due to the grading restrictions for a bimodule map, the most general � for
n ≠ 4 has the form

�(e+ ⊗ e
+) = �0e

+ ⊗ e
+
, �(e+ ⊗ e

−) = �1e
+ ⊗ e

− + �2e
− ⊗ e

+
,

�(e− ⊗ e
+) = �3e

+ ⊗ e
− + �4e

− ⊗ e
+
, �(e− ⊗ e

−) = �5e
− ⊗ e

−
(where the �i are functional parameters) while for n = 4 we can have additional
terms leading to another solution (given below). Similarly, for n ≠ 3 we can only
have the map ↵ = 0 while for n = 3 we may have additional terms leading to non∗-preserving solutions in the Appendix. Taking the displayed main form of � and
↵ = 0, torsion freeness ∧(id + �) = 0 amounts to

�2 = �1 + 1, �3 = �4 + 1,
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Next, given a bimodule ‘lift’ map i ∶ ⌦2 → ⌦1 ⊗A ⌦1 such that ∧ ○ i = id, we define
Ricci and Ricci scaler S relative to it as

Ricci = (( , )⊗ id)(id⊗ i⊗ id)(id⊗R∇)g, S = ( , )Ricci.
This is a ‘working definition’ rather than part of a fully developed theory (for
which in understanding of conservation laws and the stress-energy tensor would be
needed). In the Cayley graph case of Lemma 2.1, there is a canonical ⌦ and with
it a canonical i which for an abelian group is just

i(ea ∧ eb) = 1

2
(ea ⊗ e

b − eb ⊗ e
a)

on the Grassmann algebra generators (extended as bimodule map). Thus, once we
have found a QLC for our quantum metric, the route to the scalar curvature needed
for the Einstein-Hilbert action is canonical at least for Abelian groups such as Zn.

3. Quantization of Zn

Here we consider the general theory above for the case of an n-gon for n ≥ 3. A
metric is a free assignment of a ‘square-length’ to each edge and Section 3.1 solves
the quantum Riemannian geometry to find the quantum Levi-Civita connection.
Section 3.2 then constructs Euclidean quantum gravity on the polygon.

3.1. Quantum Riemannian geometry on Zn. Just as it is useful in classical
geometry to use local coordinates where the di↵erential structure is the standard
one for Rn, it is similarly useful to regard the n-gon as the group G = Zn for its
di↵erential structure as explained in Section 2. Here the calculus ⌦1(Zn) with
generators C = {1,−1} and corresponding left-invariant basis {e+, e−}, where

e
+ = n−1�

i=0
!i→i+1; e

− = n−1�
i=0

!i→i−1.
The n = 2 case is di↵erent and was already solved for its quantum Riemannian
geometry in [19].

Since the e
± are a basis over the algebra, a bimodule invertible quantum metric

must take the central form

g = ae+ ⊗ e
− + be− ⊗ e

+
for non-vanishing functions a, b ∈ R(Zn) and the inverse metric

(e+, e+) = (e−, e−) = 0, (e+, e−) = 1�R+(b), (e−, e+) = 1�R−(a).
Besides we have the inner element ✓ = e+ +e− and the canonical ∗-structure (e+)∗ =−e−; (e−)∗ = −e+. We also write R± = R±1 for the shift operators. On the other
hand, from the graph perspective, the relevant Cayley graph of Zn with the above
generators is a polygon of n sides where the values of the functions a, b are directed
edge weights according to Figure 1. From this, it is clear that the edge-symmetric
case, where each side of the polygon has weight independent of the direction, re-
quires b = R−a. Proceeding in this case, the quantum metric is therefore

(3.1) g = ae+ ⊗ e
− +R−(a)e− ⊗ e

+
, (e+, e−) = 1

a
, (e−, e+) = 1

R−a

b = R−(a)

Euclideanized Quantum Gravity

N-gon

Metric Edge symmetry condition 

 calculusΩ2

Inverse metric

(e+, e−) = 1/R+(b) (e−, e+) = 1/R−(a) (e±, e±) = 0



• 


• ,             


• ,         


• 


• 


•   

g = ae+ ⊗ e− + R−(a)e− ⊗ e+

∇e+ = (1 − ρ)e+ ⊗ e+ ∇e− = (1 − R2
−ρ−1)e− ⊗ e−

R∇e+ = ∂−ρe+ ∧ e− ⊗ e+ R∇e− = − ∂+(R2
−ρ−1)e+ ∧ e− ⊗ e−

Ricci =
1
2 (∂−(R−ρ)e− ⊗ e+ − ∂−ρ−1e+ ⊗ e−),

S =
1
2 (−

∂−ρ−1

a
+

∂−(R−ρ)
R−a ),

Δf = −
R−(ρ) + 1

a
(∂+ + ∂−)f

QLC

Metric

Curvature

Ricci tensor

Ricci scalar

Laplacian

∫ S = ∑
ℤn

aS =
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while metric compatibility is

R+(a) = aR+(�3)�0, a = aR+(�4)�1 +R−(a)R−(�0)�3,

R−(a) = aR+(�5)�2 +R−(a)R−(�1)�4, R
2−(a) = R−(a)R−(�2)�5,

0 = aR1(�5)�1 +R−(a)R−(�1)�3, 0 = aR+(�4)�2 +R−(a)R−(�0)�4.

It is then a matter of solving these, which was done using SAGE. Among the
solutions, we find a unique one that is ∗-preserving. The others are described for
completeness in the Appendix. ⇤

That the restriction of the unique ∗-preserving QLC on Z in [20] to periodic metrics
gives a ∗-preserving QLC is not surprising, but that this gives all ∗-preserving
solutions for n ≠ 4 is a nontrivial result of solving the equations as described.
For n = 4, similar methods lead to a further 2-parameter moduli of ∗-preserving
connections of the form

�(e+ ⊗ e
+) = �e− ⊗ e

−
, �(e+ ⊗ e

−) = e+ ⊗ e
−
,

�(e− ⊗ e
+) = e− ⊗ e

+
, �(e− ⊗ e

−) = R+a
R−(a�)e+ ⊗ e

+
,

where � = (�0,�1, �̄−10 , �̄
−1
1
) specifies a function on the four points of Z4 (in order)

in terms of two complex parameters �0,�1, such that R
2+� = �̄

−1. The associated
quantum geometric structures are

∇e+ = e+ ⊗ e
+ + e− ⊗ e

+ − e+ ⊗ e
− − �e− ⊗ e

−
,

∇e− = e− ⊗ e
− + e+ ⊗ e

− − e− ⊗ e
+ − re+ ⊗ e

+
,

R∇e+ = (R−r − 1) e+ ∧ e− ⊗ e
+
, R∇e− = (1 − r) e+ ∧ e− ⊗ e

−
,

Ricci = 1

2
(R+r − 1) e+ ⊗ e

− + 1

2
�R2+r − 1� e− ⊗ e

+
,

S = 1

2a
�(R−⇢)(R2+r − 1) +R+r − 1� ,

�f = −2
a
(@+f + (R−⇢)@−f),

where we use the shorthand

r ∶= R+(a)
R−(a) ���2.

This is the ∗-preserving case of the general n = 4 solution (i) in the Appendix.

3.2. Euclideanised quantum gravity on Zn. As for the integer line graph[20],
the two-dimensional cotangent bundle on Zn represents a kind of fattening of a circle
in the discrete case, which then admits the possibility of curvature due to the 2-
dimensional cotangent bundle. We envision that there could be various applications
of such curved discrete ‘tori’, but here we focus on just one, namely Euclideanised
quantum gravity on Zn. For integration on Zn needed in the action, we take a sum
over Zn with a weight a (in the commutative case, this would be

��det g�), which
has the merit that then the action is

Sg = 1

2
�
Zn

(R−⇢@−R−⇢) = 1

2
�
Zn

⇢@−⇢ = 1

2
�
Zn

⇢@+⇢ = 1

4
�
Zn

⇢(@+ + @−)⇢, Hilbert-Einstein Action

Geometrical structures for ℤn

ρ =
R+(a)

a

∂± f(i) = f(i + 1) ± f(i)



Quantum Gravity Applications



⟨ρi⟩

Δρi = ⟨ρ2
i ⟩ − ⟨ρi⟩2

⟨ρiρj⟩i≠j

G0
0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0
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where @+ +@− is the usual lattice double-di↵erential on Zn. This has the same form
as for a scaler field except that ⇢ is a positive function, as already observed for Z in
[20]. We consider two approaches, depending on what we regard as our underlying
field, and in both cases maintaining Zn symmetry in the result.

(i) As suggested by the form of the action, we can this of

⇢0 = a(1)
a(0) , �, ⇢n−2 = a(n − 1)

a(n − 2) , ⇢n−1 = a(0)
a(n − 1)

as n dynamical variables subject to the constraint ⇢0�⇢n−1 = 1. We think of the
constraint as a hypersurface in Rn>0 which induces a metric g⇢ on the hypersurface,
and use the Riemannian measure in this. Thus, we can take ⇢0,�,⇢n−2 as local
coordinates and measure D⇢ = (∏n−2

i=0 d⇢i)�det(g⇢). The measure here maintains
the Zn symmetry as ultimately independent of the choice of coordinates.

Explicitly, for n = 3, we take ⇢0,⇢1 as coordinates and the constrained surface in
R3>0 is ⇢2 = 1�(⇢0⇢1). The coordinate tangent vectors and induced metric are

v0 = (1,0,− 1

⇢
2

0
⇢1

), v1 = (0,1,− 1

⇢0⇢
2

1

);
g⇢ = (vi ⋅ vj) = ��

1 + 1

⇢4
0⇢2

1

⇢3
0⇢

3
1

1

⇢3
0⇢

3
1

1 + 1

⇢2
0⇢

4
1

�
� , det(g⇢) = 1 + 1

⇢
4

0
⇢
2

1

+ 1

⇢
2

0
⇢
4

1

.

Hence the partition function is

Z = � ∞
0

d⇢0 � ∞
0

d⇢1
�
det(g⇢) e− 1

2G (⇢2
0+⇢2

1+⇢2
2−⇢0⇢1−⇢1⇢2−⇢2⇢0); ⇢2 ∶= 1

⇢1⇢2

These integrals can be done numerically and appear to converge for all values G > 0
of the coupling constant (the numerical results need G not too small for working
precision but this case can be analysed separately). We are interested in expectation
values �⇢i1�⇢im� where we insert ⇢i1�⇢im in the integrand and take the ratio with
Z.

Some results obtained from this theory for n = 3 are plotted in Figure 2. Numerical
evidence is limited due to convergence accuracy issues, but it seems clear that
expectation values of products of ⇢i tend to 1 as G → 0, as might be expected. As
in [19], this should be thought of as the weak gravity limit given that fluctuations
expressed in ⇢ enter the action relative to G. Meanwhile, it appears that �⇢i�⇢i� ∼ 1.1
as G→∞ (at least for the limited range of G accessible numerically), which would
be a similar phenomenon for the relative metric uncertainty in [19] in the ‘strong

gravity’ limit. By contrast, it would appear that �⇢i⇢j��⇢i��⇢j� for i ≠ j has a minimum

of around 0.808 for G ≈ 6.55.
(ii) We can take (as more usual) the metric coe�cients as the underlying field, so
in our case the edge lengths a = (a0,�, an−1) ∈ Rn>0. Assuming Lebesgue measure,
the partition function is

Z = � ∞
0

(�
i

dai)eSg
G = � L

0

(�
i

dai)e 1
2G ∑Zn ⇢@+⇢

and we introduce a field strength upper bound L to control divergences as in [19].
One can then look at ratios independent of L or indeed consider a formal renor-
malisation process.
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Uniform uncertainty 
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constraint as a hypersurface in Rn>0 which induces a metric g⇢ on the hypersurface,
and use the Riemannian measure in this. Thus, we can take ⇢0,�,⇢n−2 as local
coordinates and measure D⇢ = (∏n−2

i=0 d⇢i)�det(g⇢). The measure here maintains
the Zn symmetry as ultimately independent of the choice of coordinates.

Explicitly, for n = 3, we take ⇢0,⇢1 as coordinates and the constrained surface in
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These integrals can be done numerically and appear to converge for all values G > 0
of the coupling constant (the numerical results need G not too small for working
precision but this case can be analysed separately). We are interested in expectation
values �⇢i1�⇢im� where we insert ⇢i1�⇢im in the integrand and take the ratio with
Z.

Some results obtained from this theory for n = 3 are plotted in Figure 2. Numerical
evidence is limited due to convergence accuracy issues, but it seems clear that
expectation values of products of ⇢i tend to 1 as G → 0, as might be expected. As
in [19], this should be thought of as the weak gravity limit given that fluctuations
expressed in ⇢ enter the action relative to G. Meanwhile, it appears that �⇢i�⇢i� ∼ 1.1
as G→∞ (at least for the limited range of G accessible numerically), which would
be a similar phenomenon for the relative metric uncertainty in [19] in the ‘strong

gravity’ limit. By contrast, it would appear that �⇢i⇢j��⇢i��⇢j� for i ≠ j has a minimum

of around 0.808 for G ≈ 6.55.
(ii) We can take (as more usual) the metric coe�cients as the underlying field, so
in our case the edge lengths a = (a0,�, an−1) ∈ Rn>0. Assuming Lebesgue measure,
the partition function is
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and we introduce a field strength upper bound L to control divergences as in [19].
One can then look at ratios independent of L or indeed consider a formal renor-
malisation process.
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On the other hand, the divergences come from the global scaling symmetry ai � �ai

for � ∈ R>0 of the action (since this depends only on the ratios ⇢) and therefore
another approach would be to ‘factor out’ the overall value and not do its integral.
This is again in the spirit of [19], except that we proceed multiplicatively. Thus we
let A = (∏i ai) 1

n be the geometric mean and bi = ai�A, which by construction obey
b0�bn−1 = 1. These are similar to the ⇢i variables in forming the corresponding
hypersurface in Rn>0 but the action is di↵erent and the measure is also di↵erent
since it is inherited from the Lebesgue measure on the ai.

Again, we will look at this explicitly for n = 3. Then the action is

Sg = 1

2
�b0
b1

+ b1

b2

+ b0

b2

− (b1
b0

)2 − (b2
b1

)2 − (b0
b2

)2� ; b2 = 1

b0b1

,

while the Jacobean for the change of variables from a0, a1, a2 to b0, b1,A gives us

da0 da1 da2 = 3A2

b0b1

db0 db1 dA.

Omitting the now decoupled integration over A as an (infinite) constant, we have
e↵ectively

Z = � ∞
0

db0 � ∞
0

db1
1

b0b1

e

1
2Gb2

0
b4
1
(−1+(1+b30)b31+(−1+b30−b60)b61)

.

The graphical expectation values against G look qualitatively similar to those of ⇢i
in Figure 2, but one also has �bi� = �bibj� for i ≠ j, but this is specific to n = 3.
Larger n > 3 can proceed entirely similarly and one has 1 < �bi� < �bibi+1�. One can
also then see that the i-step correlations �b0bi� (or between any two points di↵ering
by i) decrease as i increases from i = 0 to reach a minimum (as expected) half
way around the polygon. This is based on numerical data for small n as shown in
Figure 3. The data for n = 6 are noisy due to numerical convergence issues.

QUANTUM GRAVITY ON POLYGONS AND R × Zn FLRW MODEL 11

��i�

��i = ��2
i � � ��i�2

��i�j�i�j

G0 0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2. Euclidean quantum gravity vevs on Z3 for gauge in-
variant variables ⇢i

On the other hand, the divergences come from the global scaling symmetry ai � �ai

for � ∈ R>0 of the action (since this depends only on the ratios ⇢) and therefore
another approach would be to ‘factor out’ the overall value and not do its integral.
This is again in the spirit of [19], except that we proceed multiplicatively. Thus we
let A = (∏i ai) 1

n be the geometric mean and bi = ai�A, which by construction obey
b0�bn−1 = 1. These are similar to the ⇢i variables in forming the corresponding
hypersurface in Rn>0 but the action is di↵erent and the measure is also di↵erent
since it is inherited from the Lebesgue measure on the ai.

Again, we will look at this explicitly for n = 3. Then the action is

Sg = 1

2
�b0
b1

+ b1

b2

+ b0

b2

− (b1
b0

)2 − (b2
b1

)2 − (b0
b2

)2� ; b2 = 1

b0b1

,

while the Jacobean for the change of variables from a0, a1, a2 to b0, b1,A gives us

da0 da1 da2 = 3A2

b0b1

db0 db1 dA.

Omitting the now decoupled integration over A as an (infinite) constant, we have
e↵ectively

Z = � ∞
0

db0 � ∞
0

db1
1

b0b1

e

1
2Gb2

0
b4
1
(−1+(1+b30)b31+(−1+b30−b60)b61)

.

The graphical expectation values against G look qualitatively similar to those of ⇢i
in Figure 2, but one also has �bi� = �bibj� for i ≠ j, but this is specific to n = 3.
Larger n > 3 can proceed entirely similarly and one has 1 < �bi� < �bibi+1�. One can
also then see that the i-step correlations �b0bi� (or between any two points di↵ering
by i) decrease as i increases from i = 0 to reach a minimum (as expected) half
way around the polygon. This is based on numerical data for small n as shown in
Figure 3. The data for n = 6 are noisy due to numerical convergence issues.

QUANTUM GRAVITY ON POLYGONS AND R × Zn FLRW MODEL 11

��i�

��i = ��2
i � � ��i�2

��i�j�i�j

G0 0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2. Euclidean quantum gravity vevs on Z3 for gauge in-
variant variables ⇢i

On the other hand, the divergences come from the global scaling symmetry ai � �ai

for � ∈ R>0 of the action (since this depends only on the ratios ⇢) and therefore
another approach would be to ‘factor out’ the overall value and not do its integral.
This is again in the spirit of [19], except that we proceed multiplicatively. Thus we
let A = (∏i ai) 1

n be the geometric mean and bi = ai�A, which by construction obey
b0�bn−1 = 1. These are similar to the ⇢i variables in forming the corresponding
hypersurface in Rn>0 but the action is di↵erent and the measure is also di↵erent
since it is inherited from the Lebesgue measure on the ai.

Again, we will look at this explicitly for n = 3. Then the action is

Sg = 1

2
�b0
b1

+ b1

b2

+ b0

b2

− (b1
b0

)2 − (b2
b1

)2 − (b0
b2

)2� ; b2 = 1

b0b1

,

while the Jacobean for the change of variables from a0, a1, a2 to b0, b1,A gives us

da0 da1 da2 = 3A2

b0b1

db0 db1 dA.

Omitting the now decoupled integration over A as an (infinite) constant, we have
e↵ectively

Z = � ∞
0

db0 � ∞
0

db1
1

b0b1

e

1
2Gb2

0
b4
1
(−1+(1+b30)b31+(−1+b30−b60)b61)

.

The graphical expectation values against G look qualitatively similar to those of ⇢i
in Figure 2, but one also has �bi� = �bibj� for i ≠ j, but this is specific to n = 3.
Larger n > 3 can proceed entirely similarly and one has 1 < �bi� < �bibi+1�. One can
also then see that the i-step correlations �b0bi� (or between any two points di↵ering
by i) decrease as i increases from i = 0 to reach a minimum (as expected) half
way around the polygon. This is based on numerical data for small n as shown in
Figure 3. The data for n = 6 are noisy due to numerical convergence issues.

QUANTUM GRAVITY ON POLYGONS AND R × Zn FLRW MODEL 11

��i�

��i = ��2
i � � ��i�2

��i�j�i�j

G0 0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2. Euclidean quantum gravity vevs on Z3 for gauge in-
variant variables ⇢i

On the other hand, the divergences come from the global scaling symmetry ai � �ai

for � ∈ R>0 of the action (since this depends only on the ratios ⇢) and therefore
another approach would be to ‘factor out’ the overall value and not do its integral.
This is again in the spirit of [19], except that we proceed multiplicatively. Thus we
let A = (∏i ai) 1

n be the geometric mean and bi = ai�A, which by construction obey
b0�bn−1 = 1. These are similar to the ⇢i variables in forming the corresponding
hypersurface in Rn>0 but the action is di↵erent and the measure is also di↵erent
since it is inherited from the Lebesgue measure on the ai.

Again, we will look at this explicitly for n = 3. Then the action is

Sg = 1

2
�b0
b1

+ b1

b2

+ b0

b2

− (b1
b0

)2 − (b2
b1

)2 − (b0
b2

)2� ; b2 = 1

b0b1

,

while the Jacobean for the change of variables from a0, a1, a2 to b0, b1,A gives us

da0 da1 da2 = 3A2

b0b1

db0 db1 dA.

Omitting the now decoupled integration over A as an (infinite) constant, we have
e↵ectively

Z = � ∞
0

db0 � ∞
0

db1
1

b0b1

e

1
2Gb2

0
b4
1
(−1+(1+b30)b31+(−1+b30−b60)b61)

.

The graphical expectation values against G look qualitatively similar to those of ⇢i
in Figure 2, but one also has �bi� = �bibj� for i ≠ j, but this is specific to n = 3.
Larger n > 3 can proceed entirely similarly and one has 1 < �bi� < �bibi+1�. One can
also then see that the i-step correlations �b0bi� (or between any two points di↵ering
by i) decrease as i increases from i = 0 to reach a minimum (as expected) half
way around the polygon. This is based on numerical data for small n as shown in
Figure 3. The data for n = 6 are noisy due to numerical convergence issues.

QUANTUM GRAVITY ON POLYGONS AND R × Zn FLRW MODEL 11

��i�

��i = ��2
i � � ��i�2

��i�j�i�j

G0 0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2. Euclidean quantum gravity vevs on Z3 for gauge in-
variant variables ⇢i

On the other hand, the divergences come from the global scaling symmetry ai � �ai

for � ∈ R>0 of the action (since this depends only on the ratios ⇢) and therefore
another approach would be to ‘factor out’ the overall value and not do its integral.
This is again in the spirit of [19], except that we proceed multiplicatively. Thus we
let A = (∏i ai) 1

n be the geometric mean and bi = ai�A, which by construction obey
b0�bn−1 = 1. These are similar to the ⇢i variables in forming the corresponding
hypersurface in Rn>0 but the action is di↵erent and the measure is also di↵erent
since it is inherited from the Lebesgue measure on the ai.

Again, we will look at this explicitly for n = 3. Then the action is

Sg = 1

2
�b0
b1

+ b1

b2

+ b0

b2

− (b1
b0

)2 − (b2
b1

)2 − (b0
b2

)2� ; b2 = 1

b0b1

,

while the Jacobean for the change of variables from a0, a1, a2 to b0, b1,A gives us

da0 da1 da2 = 3A2

b0b1

db0 db1 dA.

Omitting the now decoupled integration over A as an (infinite) constant, we have
e↵ectively

Z = � ∞
0

db0 � ∞
0

db1
1

b0b1

e

1
2Gb2

0
b4
1
(−1+(1+b30)b31+(−1+b30−b60)b61)

.

The graphical expectation values against G look qualitatively similar to those of ⇢i
in Figure 2, but one also has �bi� = �bibj� for i ≠ j, but this is specific to n = 3.
Larger n > 3 can proceed entirely similarly and one has 1 < �bi� < �bibi+1�. One can
also then see that the i-step correlations �b0bi� (or between any two points di↵ering
by i) decrease as i increases from i = 0 to reach a minimum (as expected) half
way around the polygon. This is based on numerical data for small n as shown in
Figure 3. The data for n = 6 are noisy due to numerical convergence issues.

Quantize fluctuations relative to the geometrical mean for n = 3

b0b1…bn = 1With the variables And the restriction

Mesure Action

Partition function



Cosmological applications



QLC

Metric

Curvature

Ricci

Naive Einstein Tensor

Fluid tensor for a 

pressure p and density f

Geometrical structures of FLRW model

1+ 2 rate of expansion



S1

ℤ100

20 40 60 80 100
k or l

0.05

0.10

0.15

〈Nk 〉

< 0 ∣ T[ϕi(ta)ϕj(tb)] ∣ 0 > =
n−1

∑
k=0

1
wk

cos ( 2π
n

k(i − j))e−ıwk|ta−tb| .

1
2

··R
R

=
1
4 (

·R
R )

2

(m → ∞)

··R = 0 (m → ∞)

··R
R

= −
1
2 (

·R
R )

2

, (m → 0)

R ∝ t
2
3

R ∝ t

R ∝ t2

Results of FLRW model

No particle creation ℝ × ℤn

ℝ × S1

Particle creation in the adiabatic limit ·R/R → 0, ··R/R → 0

Δ = − ∂2
t − 2

·R
R

∂t +
2

R2
(∂+ + ∂−) (−Δ + m2)ϕ = 0

With  being constantan (QFT)R

wk(t) = m2 +
8

R2(t)
sin2 ( π

n
k)



Thank you for your attention


