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Plan for the lectures

• Basics of collider physics

• Basics of QCD

• DIS and the Parton Model

• Higher order corrections 

• Asymptotic freedom

• QCD improved parton model


• State-of-the-art computations for the LHC

• Monte Carlo generators

• Higgs phenomenology

• Top phenomenology

• Searching for New Physics: EFT
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Basics of collider physics

Goals of collider physics: 

Test theoretical predictions: Standard Model and New 
Physics

Hopefully find the unexpected!
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Collider physics

4

Theory

Experiment

Interpretation

Need good control of every step
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Historical perspective
Why bother? Because it works! 
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Collider When What 
particle Energy Main Impact

SPS-CERN 1981-1984 pp 600 GeV W/Z bosons

Tevatron 1983-2011 ppbar 2 TeV Top quark

LEP-CERN 1989-2000 e+e- 210 GeV Precision EW

HERA-DESY 1992-2007 ep 320 GeV QCD/PDFs

BELLE 1999-2010 e+e- 10 GeV Flavour physics

LHC 2009-Today pp 7/8/13 TeV Higgs…
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Future of collider physics?
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Collider reach
How heavy a particle can be produced?

Fixed target experiment: 

Collider experiment: 
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A + B → X M2
X = (p1 + p2)2

p1 ≃ (E,0,0,E)
p2 = (m,0,0,0)

MX ≃ 2mE

p2 ≃ (E,0,0, − E)
MX ≃ 2E

p1 ≃ (E,0,0,E)
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THE REACH OF COLLIDER FACILITIES

- linear    law: no energy loss  
- less dense bunches: small collision rates

pi + pj (177)

e+e� (178)

ep (179)

pp̄ (180)

pp (181)

A+B ! M (182)

M2 = (p1 + p2)
2 (183)

p1 ' (E, 0, 0, E) (184)

p2 = (m, 0, 0, 0) (185)

13

pi + pj (177)

e+e� (178)

ep (179)

pp̄ (180)

pp (181)

A+B ! M (182)

M2 = (p1 + p2)
2 (183)

p1 ' (E, 0, 0, E) (184)

p2 = (m, 0, 0, 0) (185)

13

pi + pj (177)

e+e� (178)

ep (179)

pp̄ (180)

pp (181)

A+B ! M (182)

M2 = (p1 + p2)
2 (183)

p1 ' (E, 0, 0, E) (184)

p2 = (m, 0, 0, 0) (185)

13

pi + pj (177)

e+e� (178)

ep (179)

pp̄ (180)

pp (181)

A+B ! M (182)

M2 = (p1 + p2)
2 (183)

p1 ' (E, 0, 0, E) (184)

p2 = (m, 0, 0, 0) (185)

13

pi + pj (177)

e+e� (178)

ep (179)

pp̄ (180)

pp (181)

A+B ! M (182)

M2 = (p1 + p2)
2 (183)

p1 ' (E, 0, 0, E) (184)

p2 = (m, 0, 0, 0) (185)

M '

p

2mE (186)

13

pi + pj (177)

e+e� (178)

ep (179)

pp̄ (180)

pp (181)

A+B ! M (182)

M2 = (p1 + p2)
2 (183)

p1 ' (E, 0, 0, E) (184)

p2 = (m, 0, 0, 0) (185)

M '

p

2mE (186)

Ekin (187)

E (188)

13

pi + pj (177)

e+e� (178)

ep (179)

pp̄ (180)

pp (181)

A+B ! M (182)

M2 = (p1 + p2)
2 (183)

p1 ' (E, 0, 0, E) (184)

p2 = (m, 0, 0, 0) (185)

M '

p

2mE (186)

Ekin (187)

E (188)

p1 = (E, 0, 0, E) (189)

p2 = (E, 0, 0,�E) (190)

13

pi + pj (177)

e+e� (178)

ep (179)

pp̄ (180)

pp (181)

A+B ! M (182)

M2 = (p1 + p2)
2 (183)

p1 ' (E, 0, 0, E) (184)

p2 = (m, 0, 0, 0) (185)

M '

p

2mE (186)

Ekin (187)

E (188)

p1 = (E, 0, 0, E) (189)

p2 = (E, 0, 0,�E) (190)

13

pi + pj (177)

e+e� (178)

ep (179)

pp̄ (180)

pp (181)

A+B ! M (182)

M2 = (p1 + p2)
2 (183)

p1 ' (E, 0, 0, E) (184)

p2 = (m, 0, 0, 0) (185)

M '

p

2mE (186)

Ekin (187)

E (188)

p1 = (E, 0, 0, E) (189)

p2 = (E, 0, 0,�E) (190)

M ' 2E (191)

13

production in 2-particle collisions:
fixed target: before after

root increase in M

- root    law: large energy loss in  
- dense target: large collision rate / luminosity
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collider target: before after

Better energy scaling for collider experiment


Note: fixed target can benefit from dense target



Eleni Vryonidou STFC HEP school 2022

Collider aspects

Luminosity: rate of particles in colliding bunches


Circular vs linear: circular colliders are compact, but suffer from synchrotron radiation


Lepton vs Hadron: Lepton colliders, all energy available in the collision

Hadron colliders, energy available determined by PDFs but can generally reach higher energies

8

ℒ =
N1N2 f

A

L = 300 fb−1

Ni

A
f

number of particles in bunches

bunch collision rate

transverse bunch area

Number of events for process with cross-section : σ Lσ LHC luminosity Run II

Integrated Luminosity: L = ∫ ℒdt



Eleni Vryonidou STFC HEP school 2022

LHC: a hadron collider
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LHC: a hadron collider
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Now
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LHC status

10

Rediscovering the SM Searching for the unknown

Good agreement with the SM
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LHC physics
What’s next?

No sign of new physics! Searches for deviations continue


New Physics can be: 

Weakly coupled: Small rates means that more Luminosity can help


Exotic: Need new ways to search for it, going beyond standard 
searches or even beyond high-energy colliders


Heavy: Not enough energy to produce it

Need indirect searches: SMEFT

11
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What is next for LHC physics 

• New Physics is hiding well! 

• Need to probe small deviations from the Standard Model using very 

precise predictions. 

• Precise predictions are needed for both the SM and BSM.

12

In this course we will study the ingredients which enter in 
theoretical predictions and interpretations of LHC data! 
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How to compute cross-sections for the LHC

13

x1E x2E

`+ `�
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How to compute cross-sections for the LHC
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pp

µFµF
x1E x2E

`+ `�

long distance

long distance

Phase-space integral Parton density functions Parton-level cross section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b
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Phase-space integral Parton density functions Parton-level cross section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b

Universal:


~Probabilities of finding 
given parton with given 
momentum in proton


Extracted from data

Important 
aspect of a 
Monte Carlo 
generator

Subject of huge efforts in 
the LHC theory community 
to systematically improve 
this

Master formula for LHC physics
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Phase-space integral Parton density functions Parton-level cross section
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We will study in detail this formula this week!



Eleni Vryonidou STFC HEP school 2022

From the hard scattering to events

15

p

Fabio MaltoniFabio MaltoniFabio MaltoniInvisibles School 2015 - Miraflores (Madrid) Fabio Maltoni14

pp
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long distance

long distance
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Parton density 
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�
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Master formula for the LHC

p
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An LHC event
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Fabio MaltoniFabio MaltoniInvisibles School 2015 - Miraflores (Madrid) Fabio Maltoni

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Sherpa artist

53

We will discuss all of these!
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QCD…

LHC is a proton-proton collider: 

• colliding particles are proton constituents with are coloured particles


QCD plays a crucial role in what we eventually observe in the detectors


Why is QCD “special”? Let’s compare it to what we know best: QED

17
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From QED to QCD
Example 1: R-ratio

18

2 e+e− Annihilation

While electron-positron colliders are less relevat for current phenomenology than they
were before, they are a good starting oint to discuss many concepts one also finds at
hadron colliders.

If we consider what happens when electrons and positrons collide, then the most likely
thing is that some hadrons are produced. However, none of the Lagrangians or Feynman
rules you’ve learnt involve hadrons. This is the key issue in most collider physics, we can
calculate things for quarks and gluons but we observe hadrons.

2.1 Leading Order

We will start by studying one of the simplest possible processes, e+e− annihilation via the
exchange of a photon or Z0 boson, as shown in Fig. 1. This process can produce either

e+

e−

!+, ν̄

!−, ν

γ/Z0 e+

e−

q

q̄

γ/Z0

Figure 1: Feynman diagrams for e+e− annihilation into leptons and quarks.

quarks or leptons. Unfortunately due to quark confinement we cannot observe free quarks
directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given that we
observe hadrons how do we infer what was going on in the fundamental process involving
quarks?

We will start with the simplest example. Given that quarks and antiquarks produce
hadrons with unit probability we can measure the cross section for the process e+e− → qq̄,
which we can calculate perturbatively, by measuring the cross section for e+e− → hadrons.
This is the case because gluons (which also produce hadrons) do not couple directly to
the leptons. This is the basis of most collider phenomenology, we want to measure things
using hadrons that we can calculate using partons. The total cross section for e+e−

annihilation into hadrons is the simplest such observable.
Using the techniques you have learnt in the other courses you can now calculate the

total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)

vs

¯
∑ |M |2 =

2e4

s2
[t2 + u2]

Let’s compute the matrix element for: 
Summing and averaging: 

Try this out!

s = (pe+ + pe−)2 t = (pe+ − pμ+)2 = −
s
2

(1 − cosθ)

u = (pe+ − pμ−)2 = −
s
2

(1 + cosθ)

Mandelstam variables:

s + t + u = 0
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γ

Prof. M.A. Thomson Michaelmas 2009 494

! And the Matrix elements become 

! In the limit where initial and final state particle mass can be neglected:   

etc.

(page 31)
! Giving:  

-1 +1cos!

! Because                                                        , the 
differential cross section is asymmetric, i.e. parity
violation (although not maximal as was the case
for the W boson).

"–

e+
e–

"#

Cross section with unpolarized beams

Prof. M.A. Thomson Michaelmas 2009 495

!To calculate the total cross section need to sum over all matrix elements and
average over the initial spin states.  Here, assuming unpolarized beams (i.e. both
e+ and both e- spin states equally likely) there a four combinations of 
initial electron/positron spins, so

!The part of the expression  {…} can be rearranged:

(1)

andand using 
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2 e+e− Annihilation

While electron-positron colliders are less relevat for current phenomenology than they
were before, they are a good starting oint to discuss many concepts one also finds at
hadron colliders.

If we consider what happens when electrons and positrons collide, then the most likely
thing is that some hadrons are produced. However, none of the Lagrangians or Feynman
rules you’ve learnt involve hadrons. This is the key issue in most collider physics, we can
calculate things for quarks and gluons but we observe hadrons.

2.1 Leading Order

We will start by studying one of the simplest possible processes, e+e− annihilation via the
exchange of a photon or Z0 boson, as shown in Fig. 1. This process can produce either

e+

e−

!+, ν̄

!−, ν

γ/Z0 e+

e−

q

q̄

γ/Z0

Figure 1: Feynman diagrams for e+e− annihilation into leptons and quarks.

quarks or leptons. Unfortunately due to quark confinement we cannot observe free quarks
directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given that we
observe hadrons how do we infer what was going on in the fundamental process involving
quarks?

We will start with the simplest example. Given that quarks and antiquarks produce
hadrons with unit probability we can measure the cross section for the process e+e− → qq̄,
which we can calculate perturbatively, by measuring the cross section for e+e− → hadrons.
This is the case because gluons (which also produce hadrons) do not couple directly to
the leptons. This is the basis of most collider phenomenology, we want to measure things
using hadrons that we can calculate using partons. The total cross section for e+e−

annihilation into hadrons is the simplest such observable.
Using the techniques you have learnt in the other courses you can now calculate the

total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)

vs

¯
∑ |M |2 =

2e4

s2
[t2 + u2]

Let’s compute the matrix element for: 
Summing and averaging: 

Try this out!

s = (pe+ + pe−)2 t = (pe+ − pμ+)2 = −
s
2

(1 − cosθ)

u = (pe+ − pμ−)2 = −
s
2

(1 + cosθ)

Mandelstam variables:

s + t + u = 0
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directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given that we
observe hadrons how do we infer what was going on in the fundamental process involving
quarks?

We will start with the simplest example. Given that quarks and antiquarks produce
hadrons with unit probability we can measure the cross section for the process e+e− → qq̄,
which we can calculate perturbatively, by measuring the cross section for e+e− → hadrons.
This is the case because gluons (which also produce hadrons) do not couple directly to
the leptons. This is the basis of most collider phenomenology, we want to measure things
using hadrons that we can calculate using partons. The total cross section for e+e−

annihilation into hadrons is the simplest such observable.
Using the techniques you have learnt in the other courses you can now calculate the

total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)

γ
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! And the Matrix elements become 

! In the limit where initial and final state particle mass can be neglected:   

etc.

(page 31)
! Giving:  

-1 +1cos!

! Because                                                        , the 
differential cross section is asymmetric, i.e. parity
violation (although not maximal as was the case
for the W boson).

"–

e+
e–

"#

Cross section with unpolarized beams
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!To calculate the total cross section need to sum over all matrix elements and
average over the initial spin states.  Here, assuming unpolarized beams (i.e. both
e+ and both e- spin states equally likely) there a four combinations of 
initial electron/positron spins, so

!The part of the expression  {…} can be rearranged:

(1)

andand using 

Why?
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σe+e−→μ+μ− =
4πα2

3s

¯
∑ |M |2 =

2e4

s2
[t2 + u2]

dΩ = dϕ dcosθ

2-body phase-space+Momentum conservation
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quarks or leptons. Unfortunately due to quark confinement we cannot observe free quarks
directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given that we
observe hadrons how do we infer what was going on in the fundamental process involving
quarks?

We will start with the simplest example. Given that quarks and antiquarks produce
hadrons with unit probability we can measure the cross section for the process e+e− → qq̄,
which we can calculate perturbatively, by measuring the cross section for e+e− → hadrons.
This is the case because gluons (which also produce hadrons) do not couple directly to
the leptons. This is the basis of most collider phenomenology, we want to measure things
using hadrons that we can calculate using partons. The total cross section for e+e−

annihilation into hadrons is the simplest such observable.
Using the techniques you have learnt in the other courses you can now calculate the

total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)

γ

dσ
dΩ

=
1

64π2s
¯

∑ |M |2

¯
∑ |M |2 ∝ (1 + cos2θ)

Cross-section: 

Try this out!
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How many colors?

Γ ∼ N2

c

[

Q2

u − Q2

d

]2 m3
π

f2
π

�EXP = 7.7± 0.6 eV

�TH =

✓
Nc

3

◆2

7.6 eV

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
∼ Nc

X

q

e2q

= 2(Nc/3) q = u, d, s

= 3.7(Nc/3) q = u, d, s, c, b
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2 e+e− Annihilation

While electron-positron colliders are less relevat for current phenomenology than they
were before, they are a good starting oint to discuss many concepts one also finds at
hadron colliders.

If we consider what happens when electrons and positrons collide, then the most likely
thing is that some hadrons are produced. However, none of the Lagrangians or Feynman
rules you’ve learnt involve hadrons. This is the key issue in most collider physics, we can
calculate things for quarks and gluons but we observe hadrons.
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quarks or leptons. Unfortunately due to quark confinement we cannot observe free quarks
directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given that we
observe hadrons how do we infer what was going on in the fundamental process involving
quarks?

We will start with the simplest example. Given that quarks and antiquarks produce
hadrons with unit probability we can measure the cross section for the process e+e− → qq̄,
which we can calculate perturbatively, by measuring the cross section for e+e− → hadrons.
This is the case because gluons (which also produce hadrons) do not couple directly to
the leptons. This is the basis of most collider phenomenology, we want to measure things
using hadrons that we can calculate using partons. The total cross section for e+e−

annihilation into hadrons is the simplest such observable.
Using the techniques you have learnt in the other courses you can now calculate the

total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)

vs
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quarks or leptons. Unfortunately due to quark confinement we cannot observe free quarks
directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given that we
observe hadrons how do we infer what was going on in the fundamental process involving
quarks?

We will start with the simplest example. Given that quarks and antiquarks produce
hadrons with unit probability we can measure the cross section for the process e+e− → qq̄,
which we can calculate perturbatively, by measuring the cross section for e+e− → hadrons.
This is the case because gluons (which also produce hadrons) do not couple directly to
the leptons. This is the basis of most collider phenomenology, we want to measure things
using hadrons that we can calculate using partons. The total cross section for e+e−

annihilation into hadrons is the simplest such observable.
Using the techniques you have learnt in the other courses you can now calculate the

total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)

Difference due to colour!!! 


Quark—anti-pair can be one of 
rr̄, gḡ, bb̄

Experimental evidence for colour!

eq

Why did we pick ?μ+μ−
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Figure 2: Expected shape for the R ratio.

where s is the centre-of-mass energy of the collision squared. The cross section for the
production of quarks is

σ(e+e− → hadrons) =
4πα2

3s

∑

q

e2qNc, (3)

where eq is the charge of the quark in units of the positron charge and the sum runs over
all quarks for which the centre-of-mass energy

√
s > 2mq, where mq is the mass of the

quark. Remember we must sum over all the quantum numbers of the quarks so the cross
section is multiplied by number of colours, Nc. Therefore for centre-of-mass energies much
less than the mass of the Z0 boson,

√
s # Mz,

R =
∑

q

e2qNc = Nc

(
4

9
+

1

9
+

1

9
︸ ︷︷ ︸

u,d,s

+
4

9

︸ ︷︷ ︸

u,d,s,c

+
1

9

)

︸ ︷︷ ︸

u,d,s,c,b

. (4)

The expected picture is shown in figure 2. The experimental measurement of this ratio
is shown in Fig. 3 as a function of energy showing the thresholds for the production
of the charm and bottom quarks. Below the charm threshold there are three active
quarks down (ed = −1

3), up (eu = 2
3) and strange (es = −1

3) giving R = 2. Above the
charm (ec =

2
3) threshold R = 10

3 while above the bottom (eb = −1
3) threshold R = 11

3 .

2.1.1 The Z resonance

For energies
√
s ∼ mZ we will need to include the effects of the second diagram in Fig. 1.

The cross-section will then have three different contributions, the photon background, the

Expected Measured
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Figure 2: Expected shape for the R ratio.

where s is the centre-of-mass energy of the collision squared. The cross section for the
production of quarks is

σ(e+e− → hadrons) =
4πα2

3s

∑

q

e2qNc, (3)

where eq is the charge of the quark in units of the positron charge and the sum runs over
all quarks for which the centre-of-mass energy

√
s > 2mq, where mq is the mass of the

quark. Remember we must sum over all the quantum numbers of the quarks so the cross
section is multiplied by number of colours, Nc. Therefore for centre-of-mass energies much
less than the mass of the Z0 boson,
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The expected picture is shown in figure 2. The experimental measurement of this ratio
is shown in Fig. 3 as a function of energy showing the thresholds for the production
of the charm and bottom quarks. Below the charm threshold there are three active
quarks down (ed = −1

3), up (eu = 2
3) and strange (es = −1

3) giving R = 2. Above the
charm (ec =

2
3) threshold R = 10

3 while above the bottom (eb = −1
3) threshold R = 11

3 .

2.1.1 The Z resonance

For energies
√
s ∼ mZ we will need to include the effects of the second diagram in Fig. 1.

The cross-section will then have three different contributions, the photon background, the

Expected Measured

Quarkonium states: very small width, very long lived states
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See exercise!

2 e+e− Annihilation

While electron-positron colliders are less relevat for current phenomenology than they
were before, they are a good starting oint to discuss many concepts one also finds at
hadron colliders.

If we consider what happens when electrons and positrons collide, then the most likely
thing is that some hadrons are produced. However, none of the Lagrangians or Feynman
rules you’ve learnt involve hadrons. This is the key issue in most collider physics, we can
calculate things for quarks and gluons but we observe hadrons.

2.1 Leading Order

We will start by studying one of the simplest possible processes, e+e− annihilation via the
exchange of a photon or Z0 boson, as shown in Fig. 1. This process can produce either

e+

e−

!+, ν̄

!−, ν

γ/Z0 e+

e−

q

q̄

γ/Z0

Figure 1: Feynman diagrams for e+e− annihilation into leptons and quarks.

quarks or leptons. Unfortunately due to quark confinement we cannot observe free quarks
directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given that we
observe hadrons how do we infer what was going on in the fundamental process involving
quarks?

We will start with the simplest example. Given that quarks and antiquarks produce
hadrons with unit probability we can measure the cross section for the process e+e− → qq̄,
which we can calculate perturbatively, by measuring the cross section for e+e− → hadrons.
This is the case because gluons (which also produce hadrons) do not couple directly to
the leptons. This is the basis of most collider phenomenology, we want to measure things
using hadrons that we can calculate using partons. The total cross section for e+e−

annihilation into hadrons is the simplest such observable.
Using the techniques you have learnt in the other courses you can now calculate the

total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)

γ
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directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given that we
observe hadrons how do we infer what was going on in the fundamental process involving
quarks?

We will start with the simplest example. Given that quarks and antiquarks produce
hadrons with unit probability we can measure the cross section for the process e+e− → qq̄,
which we can calculate perturbatively, by measuring the cross section for e+e− → hadrons.
This is the case because gluons (which also produce hadrons) do not couple directly to
the leptons. This is the basis of most collider phenomenology, we want to measure things
using hadrons that we can calculate using partons. The total cross section for e+e−

annihilation into hadrons is the simplest such observable.
Using the techniques you have learnt in the other courses you can now calculate the

total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)

Z

s ∼ MZZ contribution becomes relevant when 

We then need both diagrams and their interference
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where |p1| is the magnitude of the three-momenta of either of the outgoing particles and
θ and φ are the polar and azimuthal scattering angles, respectively. The cross section

dσ =
1

16πs

|p1|√
s
d cos θ|M|2. (117)

In is conventional to describe the scattering process in terms of the Mandelstam variables

s = (pa + pb)
2, t = (pa − p1)

2, u = (pa − p2)
2. (118)

There are only two independent Mandelstam variables

s+ t + u = m2
1 +m2

2 +m2
a +m2

b
massless−→ 0. (119)

In terms of these variables

dσ =
1

16πs2
dt|M|2. (120)

A.3 Cross Sections in Hadron Collisions

In hadron collisions there is an additional complication as the partons inside the hadrons
interact. The hadron–hadron cross section is

dσAB =
∑

ab

∫ 1

0

dx1dx2fa/A(x1, µ
2
F )fb/B(x2, µ

2
F )σ̂ab(ŝ, µ

2
F , µ

2
R), (121)

where x1,2 are momentum fractions of the interacting partons with respect to the incoming
hadrons, ŝ = x1x2s, σ̂ab(ŝ, µ2

F , µ
2
R) is the parton-level cross section for the partons a and b

to produce the relevant final state, fa/A(x, µ2
F ) is the parton distribution function (PDF)

giving the probability of finding the parton a in the hadronA, and similarly for fb/B(x, µ2
F ).

The factorization and renormalisation scales are µF and µR, respectively.
In hadron collisions we usually denote the variables for partonic process with ˆ, e.g.

ŝ, t̂ and û for the Mandelstam variables.

A.3.1 Resonance production (2 → 1 processes)

The simplest example of a hadronic cross section is the production of an s-channel res-
onance, for example the Z0 or Higgs bosons. We assume that the incoming partons are
massless so that the 4-momenta of the incoming partons are:

pa,b = x1,2(E, 0, 0, ±E), (122)

where E is beam energy in the hadron–hadron centre-of-mass system of collider such that
s = 4E2. The Breit-Wigner cross section, e.g. for Z production, is

σ̂qq̄→Z0→µ+µ− =
1

N2
C

12πŝ

M2
Z

Γqq̄Γµ+µ−

(ŝ−M2
Z)

2 +M2
ZΓ

2
Z

. (123)

In the limit that the width is a lot less than the mass

1

(ŝ−M2
Z)

2 +M2
ZΓ

2
Z

≈
π

MZΓZ
δ(ŝ−M2

Z), (124)

σe+e−→Z→μ+μ− ≃ σe+e−→Z × Br(Z → μ+μ−)

Z is an unstable particle, we can’t simply  use 1
s − M2

Z

Breit-Wigner propagator: 
1

s − M2
Z + iΓM

if ΓZ /MZ ≪ 1

Narrow width approximation: 

with Br(Z → μ+μ−) = ΓZ→μ+μ−/ΓZ

Simplifies computations for particles with narrow width (e.g. Higgs)
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We want to focus on how gauge invariance is realized in practice. 
Let’s start with the computation of a simple process e+e- →γγ.  There are two diagrams:

q

k1,μ

k2,ν

q

-

From QED to QCD

Gauge invariance requires that:

iM = Mµ⌫✏
⇤µ
1 ✏⇤⌫2 = D1 +D2 = e2

✓
v̄(q̄)/✏2

1

/q � /k1
/✏1u(q) + v̄(q̄)/✏1

1

/q � /k2
/✏2u(q)

◆

✏⇤µ1 k⌫2Mµ⌫ = ✏⇤⌫2 kµ1Mµ⌫ = 0
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So now let’s calculate qq → gg and we obtain

i

g2
s

Mg ≡ (tbta)ijD1 + (tatb)ijD2

Mg = (tatb)ijMγ − g2fabctcijD1

!
Let’s try now to generalize what we have done for SU(3). In this case we take the 
(anti-)quarks to be in the (anti-)fundamental representation of SU(3), 3 and 3*.  Then the 
current is in a 3 ⊗ 3* = 1 ⊕ 8. The singlet is like a photon, so we identify the gluon with 
the octet and generalize the QED vertex to : 

−igst
a
ijγ

µ
[ta, tb] = ifabctcwith

j

i

a

From QED to QCD
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◆

Only the sum of the two diagrams is gauge invariant. For the amplitude to be gauge 
invariant it is enough that one of the polarizations is longitudinal. The state of the other 
gauge boson is irrelevant. 
!
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Works fine! 

Let’s compute the amplitude for qq̄ → γγ
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But in this case one piece is left out

k1µMµ
g = i(−gsf

abcεµ
2
)(−igst

c
ij v̄i(q̄)γµui(q))

k1µMµ
g = −g2

sfabctcij v̄i(q̄)"ε2ui(q)

To satisfy gauge invariance we still need: 

k
µ

1
ε2

ν
M

µ,ν

g = k
ν

2 ε
µ

1
M

µ,ν

g = 0.

−gsf
abcVµ1µ2µ3

(p1, p2, p3)

We indeed see that we interpret as the normal vertex 
times a new 3 gluon vertex:

From QED to QCD

29
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We don’t get zero anymore!

Let’s do the same for qq̄ → gg

Is this gauge invariant?
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1-loop vertices 

[ta, tb] = ifabctc

- =

a b b a a b

= CA/2 *ifabc(tbtc)ij =
CA

2
taij

= -1/2/Nc *(tbtat
b)ij = (CF −

CA

2
)taij

[F a, F b] = ifabcF c

The color algebra

37
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How do we write down the Lorentz part for this new interaction? We can impose 
1. Lorentz invariance : only structure of the type gµν pρ are allowed 
2. fully anti-symmetry : only structure of the type remain gµ1µ2  (k1)µ3 are allowed... 
3. dimensional analysis : only one power of the momentum. 
that uniquely constrain the form of the vertex:
Vµ1µ2µ3

(p1, p2, p3) = V0 [(p1 − p2)µ3
gµ1µ2

+ (p2 − p3)µ1
gµ2µ3

+ (p3 − p1)µ2
gµ3µ1

]

−ig2

sD3 =
(

−igst
a
ij v̄i(q̄)γ

µuj(q)
)

×

(

−i

p2

)

×

(

−gfabcVµνρ(−p, k1, k2)ε
ν
1(k1)ε

ρ
2
(k2)

)

k1 · D3 = g2fabctcV0

[

v̄(q̄)!ε2u(q) −
k2 · ε2
2k1 · k2

v̄(q̄)!k1u(q)

]

The first term cancels the gauge variation of D1+ D2 if V0=1, the 
second term is zero IFF the other gluon is physical!!

One can derive the form of the four-gluon vertex using the same heuristic method.

With the above expression we obtain a contribution to the gauge variation:

From QED to QCD
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Gauge invariant IFF the other gluon is physical!

From QED to QCD

• Lorentz invariant


• Anti-symmetry


• Dimensional analysis

An empirical way to write down the triple gluon vertex!

What are we missing?
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Example 2: QCD and gauge invariance
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From QED to QCD
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Fabio MaltoniFabio MaltoniGGI Florence - 2017	

How do we write down the Lorentz part for this new interaction? We can impose 
1. Lorentz invariance : only structure of the type gµν pρ are allowed 
2. fully anti-symmetry : only structure of the type remain gµ1µ2  (k1)µ3 are allowed... 
3. dimensional analysis : only one power of the momentum. 
that uniquely constrain the form of the vertex:
Vµ1µ2µ3

(p1, p2, p3) = V0 [(p1 − p2)µ3
gµ1µ2

+ (p2 − p3)µ1
gµ2µ3

+ (p3 − p1)µ2
gµ3µ1

]

−ig2

sD3 =
(

−igst
a
ij v̄i(q̄)γ

µuj(q)
)

×

(

−i

p2

)

×

(

−gfabcVµνρ(−p, k1, k2)ε
ν
1(k1)ε

ρ
2
(k2)

)

k1 · D3 = g2fabctcV0

[

v̄(q̄)!ε2u(q) −
k2 · ε2
2k1 · k2

v̄(q̄)!k1u(q)

]

The first term cancels the gauge variation of D1+ D2 if V0=1, the 
second term is zero IFF the other gluon is physical!!

One can derive the form of the four-gluon vertex using the same heuristic method.

With the above expression we obtain a contribution to the gauge variation:

From QED to QCD

30



Eleni Vryonidou STFC HEP school 2022 26
Fabio MaltoniFabio MaltoniGGI Florence - 2017	

How do we write down the Lorentz part for this new interaction? We can impose 
1. Lorentz invariance : only structure of the type gµν pρ are allowed 
2. fully anti-symmetry : only structure of the type remain gµ1µ2  (k1)µ3 are allowed... 
3. dimensional analysis : only one power of the momentum. 
that uniquely constrain the form of the vertex:
Vµ1µ2µ3

(p1, p2, p3) = V0 [(p1 − p2)µ3
gµ1µ2

+ (p2 − p3)µ1
gµ2µ3

+ (p3 − p1)µ2
gµ3µ1

]

−ig2

sD3 =
(

−igst
a
ij v̄i(q̄)γ

µuj(q)
)

×

(

−i

p2

)

×

(

−gfabcVµνρ(−p, k1, k2)ε
ν
1(k1)ε

ρ
2
(k2)

)

k1 · D3 = g2fabctcV0

[

v̄(q̄)!ε2u(q) −
k2 · ε2
2k1 · k2

v̄(q̄)!k1u(q)

]

The first term cancels the gauge variation of D1+ D2 if V0=1, the 
second term is zero IFF the other gluon is physical!!

One can derive the form of the four-gluon vertex using the same heuristic method.

With the above expression we obtain a contribution to the gauge variation:

From QED to QCD

30

Fabio MaltoniFabio MaltoniGGI Florence - 2017	

How do we write down the Lorentz part for this new interaction? We can impose 
1. Lorentz invariance : only structure of the type gµν pρ are allowed 
2. fully anti-symmetry : only structure of the type remain gµ1µ2  (k1)µ3 are allowed... 
3. dimensional analysis : only one power of the momentum. 
that uniquely constrain the form of the vertex:
Vµ1µ2µ3

(p1, p2, p3) = V0 [(p1 − p2)µ3
gµ1µ2

+ (p2 − p3)µ1
gµ2µ3

+ (p3 − p1)µ2
gµ3µ1

]

−ig2

sD3 =
(

−igst
a
ij v̄i(q̄)γ

µuj(q)
)

×

(

−i

p2

)

×

(

−gfabcVµνρ(−p, k1, k2)ε
ν
1(k1)ε

ρ
2
(k2)

)

k1 · D3 = g2fabctcV0

[

v̄(q̄)!ε2u(q) −
k2 · ε2
2k1 · k2

v̄(q̄)!k1u(q)

]

The first term cancels the gauge variation of D1+ D2 if V0=1, the 
second term is zero IFF the other gluon is physical!!

One can derive the form of the four-gluon vertex using the same heuristic method.

With the above expression we obtain a contribution to the gauge variation:

From QED to QCD

30

Gauge invariant IFF the other gluon is physical!

From QED to QCD

• Lorentz invariant


• Anti-symmetry


• Dimensional analysis

An empirical way to write down the triple gluon vertex!

What are we missing?
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QCD Lagrangian
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!

!

Interaction

!

!

Gauge 
Fields 

!

!

Matter

The QCD Lagrangian

Very similar to the QED Lagrangian.. we’ll see in a moment where the 
differences come from!

L = −
1

4
F a

µνFµν
a +

∑

f

ψ̄
(f)
i (i"∂ − mf )ψ(f)

i − ψ̄
(f)
i (gst

a
ij "Aa)ψ(f)

j

[ta, tb] = ifabctc

tr(tat
b) =

1

2
δ

ab

→Algebra of SU(N)

→Normalization 

15
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The QCD Lagrangian

L = −
1

4
F a

µνFµν
a +

∑

f

ψ̄
(f)
i (i"∂ − mf )ψ(f)

i − ψ̄
(f)
i (gst

a
ij "Aa)ψ(f)

j

F a
µν = ∂µAa

ν − ∂νAa
µ−gfabcAb

µAc
ν

By direct inspection and by using the form non-abelian covariant derivation, we can check that 
indeed non-abelian gauge symmetry implies self-interactions. This is not surprising since the gluon 
itself is charged (In QED the photon is not!)

31 See QCD-QED course!
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Colour algebra
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Tr(tat
b) = TRδ

ab = TR * 

Tr(ta) = 0 = 0

(tat
a)ij = CF δij = CF * 

= (F c
F

c)ab = CAδab

∑

cd

facdf bcd

= CA* 

The color algebra

36
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1-loop vertices 

[ta, tb] = ifabctc

- =

a b b a a b

= CA/2 *ifabc(tbtc)ij =
CA

2
taij

= -1/2/Nc *(tbtat
b)ij = (CF −

CA

2
)taij

[F a, F b] = ifabcF c

The color algebra

37Can be a bottleneck for higher order computations! People always on the lookout 
for simplifications! Quite a few computations are done in the large  limit. Nc
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Properties of QCD

UV: Asymptotic freedom 

• Perturbative computations

• Parton model


IR: Universality 

• Collinear Factorisation

• Parton showers

29

The two faces of QCD

 16

Confinement 
(large distance)

asymptotic freedom 
(short distance)

NB: no proof of confinement. We simply never observed quarks as free particles 

Fabio MaltoniBUSSTEPP - Glasgow, Aug 2019             Fabio Maltoni

• z is the “energy variable”: it is defined to be the energy fraction taken by 
parton b from parton a. It represents the energy sharing between b and c and 
tends to 1 in the soft limit (parton c going soft) 

• Φ is the azimuthal angle. It can be chosen to be the angle between the 
polarization of a and the plane of the branching. 

• Pa→bc are the Altarelli-Parisi                                                                                
splitting functions

'22

2a
b

c
θ

Mn+1 θ ➞ ×
b

c

a

2a

Mn

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)

•  The process factorizes in the collinear limit. This procedure it universal!  
 

Pg!qq(z) = TR

⇥
z2 + (1� z)2

⇤
, Pg!gg(z) = CA


z(1� z) +

z

1� z
+

1� z

z

�
,

Pq!qg(z) = CF


1 + z2

1� z

�
, Pq!gq(z) = CF


1 + (1� z)2

z

�
.

QCD Concept #2 : Universality
0
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Deep Inelastic Scattering

30
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Scaling

cms energy2 
!
momentum transfer2 
!
scaling variable 
!
energy loss 
!
rel. energy loss 
!
recoil mass

s = (P + k)2

Q2 = �(k � k0)2

x = Q2/2(P · q)
⌫ = (P · q)/M = E � E0

y = (P · q)/(P · k) = 1� E0/E

W 2 = (P + q)2 = M2 +
1� x

x
Q2

d�elastic

dq2
=

✓
d�

dq2

◆

point

· F 2
elastic(q

2) �(1� x) dx

d�inelastic

dq2
=

✓
d�

dq2

◆

point

· F 2
inelastic(q

2, x) dx

What should we expect for F(q2,x)?
11
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CoM energy

momentum transfer^2

scaling variable

energy loss

relative energy loss

recoil mass

Can we guess what F looks like?
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Deep Inelastic scattering

What can  look like?

1. Proton charge is smoothly distributed (probe penetrates proton like a knife through 
butter)




2. Proton consists of tightly bound charges (quarks hit as single particles, but cannot fly 
away because tightly bound) 





!!!3. 

Quarks are free particles which fly away without caring about confinement!

F2(q2)

F2
elastic(q

2) ∼ F2
inelastic(q

2, x) ≪ 1

F2
elastic(q

2) ∼ 1 F2
inelastic(q

2, x) ≪ 1
F2

elastic(q
2) ≪ 1 F2

inelastic(q
2, x) ∼ 1

31
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Parton Model
DIS cross-section

32
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* Divide phase-space factor into a leptonic and a hadronic part:	
!
!
!
!
* Separate also the square of the Feynman amplitude, by defining:	
!
!
!
* The leptonic tensor can be calculated explicitly:	
!
!
!
* Combine the hadronic part of the amplitude and phase space into “hadronic tensor”  and 
use just Lorentz symmetry and gauge invariance to write	
!
!

q q

pp

Wµν(p, q) =

(

−gµν −

qµqν

q2

)

F1(x, Q2)+

(

pµ − qµ

p · q

q2

) (

pν − qν

p · q

q2

)

1

p · q
F2(x, Q2)

d� =
d3k0

(2⇡)32E0 d�X =
ME

8⇡2
y dy dx d�X

1

4

X
|M|2 =

e4

Q4
Lµ⌫hXµ⌫

Lµ⌫ =
1

4
tr[k/�µk0/�⌫ ] = kµk0⌫ + k0µk⌫ � gµ⌫k · k0

Wµ⌫ =
X

X

Z
d�XhXµ⌫

DIS: The parton model
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“deep inelastic” : Q2 >> 1 GeV2	
“scaling limit”: Q2 →∞, x fixed

The idea is that by measuring all the kinematics variables of the outgoing electron 
one can study the structure of the proton in terms of the probe characteristics, 
Q2,x,y... Very inclusive measurement from the QCD point of view.

cms energy2	
!
momentum transfer2	
!
scaling variable	
!
energy loss	
!
rel. energy loss	
!
recoil mass

s = (P + k)2

Q2 = �(k � k0)2

x = Q2/2(P · q)
⌫ = (P · q)/M = E � E0

y = (P · q)/(P · k) = 1� E0/E

W 2 = (P + q)2 = M2 +
1� x

x
Q2

DIS: The parton model
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Based on Lorentz and gauge invariance 

Why 1/Q4?
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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

*  Different y dependence can differentiate between F1 and F2 
*  The first term represents the absorption of a transversely polarized photon,  
   the second of a longitudinal one. 
*  Bjorken scaling ⇒ F1 and F2  obey scaling themselves, i.e. they do not depend on Q. 
!

Comments:

�ep!eX =
X

X

1

4ME

Z
d�

1

4

X

spin

|M|2

DIS: The parton model
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Transverse photon Longitudinal photon

After a bit of maths (good exercise), we get:
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Parton Model
Breit frame
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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

*  Different y dependence can differentiate between F1 and F2 
*  The first term represents the absorption of a transversely polarized photon,  
   the second of a longitudinal one. 
*  Bjorken scaling ⇒ F1 and F2  obey scaling themselves, i.e. they do not depend on Q. 
!
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The Breit frame I

p = (E, 0, 0, �p)

p
0 = (E, 0, 0, p

0)

q = (0, 0, 0, �Q)

k

k
0

p̂ = (E, 0, 0, �p)

p̂
0 = (E, 0, 0, p

0)

• Because the virtual photon is space-like (q2 < 0) it follows that
we can boost the photon along its direction of propagation (which
points to the proton) such that q0 vanishes. This frame is called the
Breit frame or infinite momentum frame since the proton
then moves with very large momentum towards the virtual photon.

• In this frame the incoming quark moves with a 3-momentum ⇠pz
along the z axis, where ⇠ is the fraction of the proton 3-momentum
pz. The virtual photon moves with a 3-momentum Q along �z.

• We take the incoming quark to be point-like, so that the scattering
is necessarily elastic:52

p̂2 = (p̂ + q)2 ! p̂2 = p̂2 + 2p̂ · q � Q2 ! Q2 = 2p̂ · q

• If we denote the proton 4-momentum by p then, in the Breit frame,

p̂ · q = (E, 0, 0, ⇠pz) · (0, 0, 0,�Q) = ⇠pzQ

⇠p · q = ⇠(Ep, 0, 0, pz) · (0, 0, 0,�Q) = ⇠pzQ

Thus p̂ ·q = ⇠ p ·q but remember that this is only true in the Breit
frame where the virtual photon does not transfer energy.

52We indicate the unobservable partonic kinematic variables by a hat, like p̂ for a partonic 4-momentum.
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Rest frame: Proton extent: 

The proton moves fast and the photon has zero energy
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2.3 Frames in DIS

In QCD, the interpretation of physical phenomena depends on the reference frame. This
is simply due to the fact that, under a Lorentz transformation, the fields are modified.
Therefore, depending on the effect we want to highlight, it is important to choose carefully
the reference frame in which we work. We shall briefly introduce the most important frames
used in DIS.

2.3.1 Björken frame

This frame has already been introduced to obtain Björken scaling. If we introduce the
light-cone variables

p± =
E ± px√

2
,

it is the frame where the proton moves very fast:

p+ " m, p− # m and !p⊥ = !0⊥.

The partons have a momentum ξp which means that they also move along the “+” direction.
If n is the 4-vector introduced above, the photon has a momentum

qµ = νnµ + qµ
⊥,

with Q2 = !q2
⊥.

As we have seen, this frame is perfectly suited to introduce Björken scaling. It is the
frame where we can properly define parton distributions, even if we take into account QCD
corrections4.

2.3.2 Breit frame

The Breit frame is the frame where the photon has a vanishing energy and the proton is
moving close to the light-cone. In this case,

p ≡
(√

Q2

4x2
+ m2,

Q

2x
,!0⊥

)

≈
(

Q

2x
+

xm2

Q
,

Q

2x
,!0⊥

)

q ≡
(
0,−Q,!0⊥

)
.

Since, in the rest frame, the proton has a space-time extension

∆x+ ∼ ∆x− ∼ 1

m
,

4We shall see in the next chapter that, in addition, we must work in the light-cone gauge, where QCD
corrections take the form of ladders.
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its extension in the moving frame is

∆x+ ∼ Q

m2
, ∆x− ∼ 1

Q
.

Since the photon has ∆x+ ∼ 1/Q, we have, for Q2 " m2,
(
∆x+

)
photon

#
(
∆x+

)
proton

.

This shows that the photon can resolve partons.

2.3.3 Dipole frame

The idea of the dipole frame is to have a picture of DIS where the photon splits into a qq̄
dipole and that dipole interacts with the proton. If the lifetime of the dipole is much larger
than the interaction time, we can factorise the γ∗p cross-section as follows

σγ∗p(x, Q2) =

∫
d2b d2r

∫ 1

0

dz
∣∣∣Ψ(Q2;#b,#r, z)

∣∣∣
2
σdipole(x;#b,#r, z),

where Ψ is the photon wavefunction. This picture can be represented in this way:

b

r

z

1 − z

Q2

In this frame, both the proton and the photon are near the light-cone and move along
the z axis in opposite directions :

p ≡
(

P +
M2

2P
, P,#0⊥

)
,

q ≡
(√

q2
0 − Q2,−q0,#0⊥

)
,

with q0 " Q. With these definitions, we must have ν = p.q ≈ 2Pq0. On the other hand, if
we want both the proton and the photon near the light-cone, we must have P and q0 " Q.
Thus ν " Q2 and x # 1. This means that the dipole frame is suited to study DIS at small
x, or in the double leading approximation (x # 1 and Q2 " m2

p). Due to the fact that we
have p+ very large and q+ very small, the photon lifetime is much bigger than the interaction
time.

Finally, note that, in this frame, the partonic structure of the proton is no longer valid
and the photon does not probe the proton structure. Instead of describing the γ∗p interaction
as a parton taken out of the proton following by the interaction between this parton and the
virtual photon, in the dipole frame, we shall have a dipole interacting with the gluonic field
inside the proton5. This interaction does not involve one single parton.

5This interaction can be expressed in terms of Wilson lines.
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Breit frame: Proton extent: 
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P +
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with q0 " Q. With these definitions, we must have ν = p.q ≈ 2Pq0. On the other hand, if
we want both the proton and the photon near the light-cone, we must have P and q0 " Q.
Thus ν " Q2 and x # 1. This means that the dipole frame is suited to study DIS at small
x, or in the double leading approximation (x # 1 and Q2 " m2

p). Due to the fact that we
have p+ very large and q+ very small, the photon lifetime is much bigger than the interaction
time.

Finally, note that, in this frame, the partonic structure of the proton is no longer valid
and the photon does not probe the proton structure. Instead of describing the γ∗p interaction
as a parton taken out of the proton following by the interaction between this parton and the
virtual photon, in the dipole frame, we shall have a dipole interacting with the gluonic field
inside the proton5. This interaction does not involve one single parton.

5This interaction can be expressed in terms of Wilson lines.

Photon extent: 
The time scale of a typical parton-parton interaction is much larger than the hard 
interaction time. 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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

*  Different y dependence can differentiate between F1 and F2 
*  The first term represents the absorption of a transversely polarized photon,  
   the second of a longitudinal one. 
*  Bjorken scaling ⇒ F1 and F2  obey scaling themselves, i.e. they do not depend on Q. 
!
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The Breit frame I
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• Because the virtual photon is space-like (q2 < 0) it follows that
we can boost the photon along its direction of propagation (which
points to the proton) such that q0 vanishes. This frame is called the
Breit frame or infinite momentum frame since the proton
then moves with very large momentum towards the virtual photon.

• In this frame the incoming quark moves with a 3-momentum ⇠pz
along the z axis, where ⇠ is the fraction of the proton 3-momentum
pz. The virtual photon moves with a 3-momentum Q along �z.

• We take the incoming quark to be point-like, so that the scattering
is necessarily elastic:52

p̂2 = (p̂ + q)2 ! p̂2 = p̂2 + 2p̂ · q � Q2 ! Q2 = 2p̂ · q

• If we denote the proton 4-momentum by p then, in the Breit frame,

p̂ · q = (E, 0, 0, ⇠pz) · (0, 0, 0,�Q) = ⇠pzQ

⇠p · q = ⇠(Ep, 0, 0, pz) · (0, 0, 0,�Q) = ⇠pzQ

Thus p̂ ·q = ⇠ p ·q but remember that this is only true in the Breit
frame where the virtual photon does not transfer energy.

52We indicate the unobservable partonic kinematic variables by a hat, like p̂ for a partonic 4-momentum.

8–12

The proton moves fast and the photon has zero energy
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than the interaction time, we can factorise the γ∗p cross-section as follows

σγ∗p(x, Q2) =

∫
d2b d2r

∫ 1

0

dz
∣∣∣Ψ(Q2;#b,#r, z)

∣∣∣
2
σdipole(x;#b,#r, z),
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In this frame, both the proton and the photon are near the light-cone and move along
the z axis in opposite directions :

p ≡
(

P +
M2

2P
, P,#0⊥

)
,

q ≡
(√

q2
0 − Q2,−q0,#0⊥

)
,

with q0 " Q. With these definitions, we must have ν = p.q ≈ 2Pq0. On the other hand, if
we want both the proton and the photon near the light-cone, we must have P and q0 " Q.
Thus ν " Q2 and x # 1. This means that the dipole frame is suited to study DIS at small
x, or in the double leading approximation (x # 1 and Q2 " m2

p). Due to the fact that we
have p+ very large and q+ very small, the photon lifetime is much bigger than the interaction
time.

Finally, note that, in this frame, the partonic structure of the proton is no longer valid
and the photon does not probe the proton structure. Instead of describing the γ∗p interaction
as a parton taken out of the proton following by the interaction between this parton and the
virtual photon, in the dipole frame, we shall have a dipole interacting with the gluonic field
inside the proton5. This interaction does not involve one single parton.

5This interaction can be expressed in terms of Wilson lines.

• The time scale of a typical parton-parton interaction is much larger than the hard interaction time.

• Schematically: in the Breit frame the proton moves very fast towards the photon, and is therefore 

Lorentz contracted to a kind of pancake. 

• The photon interaction then takes place on the very short time scale when the photon passes 

that pancake. 

• During the short interaction time, the struck quark thus does not interact with the spectator 

quarks and can be regarded as a free parton.  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p
⇠p short distance

long distance

The space-time picture suggests the possibility of separating short- and long-distance physics 
⇒ factorization! Turned into the language of Feynman diagrams DIS looks like:

d2�

dxdQ2
=

Z 1

0

d⇠

⇠

X

i

fi(⇠)
d2�̂

dxdQ2
(
x

⇠
, Q2)

where
is the probability to find a 
parton with flavor i in an 
hadron h carrying a light-
cone momentum ξp+

is the cross section for 
electron-parton scattering

d2�̂

dxdQ2

DIS: The parton model

120

Breit picture frame allows us to assume partons are free within proton: 
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fi(ξ) Probability of finding parton  in hadron 
carrying momentum fraction 

i
ξ

Cross-section for parton-photon 
scattering
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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

We can now compare with our “inclusive” description of DIS in terms of structure 
functions (which, BTW, are physical measurable quantities),

with our parton model formulas:

we find (be careful to distinguish x and ξ) 

* So we find the scaling is true: no dependence on Q2. 
* q and qbar enter together : no way to distinguish them with NC. Charged currents are needed. 
* FL(x) =  F2(x) - 2 F1(x) vanishes at LO (Callan-Gross relation), which is a test that quarks are 
spin 1/2 particles! In fact if the quarks where scalars we would have had F1(x) = 0 and F2=FL .

with d2σ̂

dQ2dx
=

4πα2

Q4

1

2

[

1 + (1 − y)2
]

e2

q
δ(x − ξ)

DIS: The parton model

122

d2σ

dxdQ2
=

∫ 1

0

dξ

ξ

∑
i

fi(ξ)
d2σ

dx̂dQ2
(
x

ξ
, Q2)

F2(x) = 2xF1 =
∑

i=q,q̄

∫ 1

0

dξfi(ξ) xe2

qδ(x − ξ) =
∑

i=q,q̄

e2

q xfi(x)

Comparing our inclusive cross-section: 
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Factorised cross-section in the parton model: 
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We can express the structure functions as: 
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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

We can now compare with our “inclusive” description of DIS in terms of structure 
functions (which, BTW, are physical measurable quantities),

with our parton model formulas:

we find (be careful to distinguish x and ξ) 

* So we find the scaling is true: no dependence on Q2. 
* q and qbar enter together : no way to distinguish them with NC. Charged currents are needed. 
* FL(x) =  F2(x) - 2 F1(x) vanishes at LO (Callan-Gross relation), which is a test that quarks are 
spin 1/2 particles! In fact if the quarks where scalars we would have had F1(x) = 0 and F2=FL .

with d2σ̂

dQ2dx
=

4πα2

Q4

1

2

[

1 + (1 − y)2
]

e2

q
δ(x − ξ)

DIS: The parton model
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d2σ

dxdQ2
=

∫ 1

0

dξ

ξ

∑
i

fi(ξ)
d2σ

dx̂dQ2
(
x

ξ
, Q2)

F2(x) = 2xF1 =
∑

i=q,q̄

∫ 1

0

dξfi(ξ) xe2

qδ(x − ξ) =
∑

i=q,q̄

e2

q xfi(x)

We can express the structure functions as: 

Quarks and anti-quarks enter together. 


No dependence on Q: Scaling 

 are the parton distribution functions which describe the probabilities of finding 
specific partons in the proton carrying momentum fraction 
fi(x)

x

How can we separate them?
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Scaling: Structure function does not depend on Q

Measuring the Structure Functions

Prof. M.A. Thomson Michaelmas 2011 186

!To determine     and    for a given and       need 
measurements of the differential cross section at several different
scattering angles and incoming electron beam energies (see Q13
on examples sheet)
Example: electron-proton scattering F2 vs. Q2 at fixed x

J.T.Friedm
an + H

.W
.K

endall,
A

nn. R
ev. N

ucl. S
ci. 22 (1972) 203

" Experimentally it is observed that both      and        are (almost) 
independent of

Bjorken Scaling and the Callan-Gross Relation

Prof. M.A. Thomson Michaelmas 2011 187

!The near (see later) independence of the structure functions on Q2 is
known as Bjorken Scaling, i.e.

•It is strongly suggestive of scattering from point-like constituents
within the proton

!It is also observed that        and
are not independent but satisfy the 
Callan-Gross relation

•As we shall soon see this is exactly what is
expected for scattering from spin-half quarks.

•Note if quarks were spin zero particles we would 
expect the purely magnetic structure function to 
be zero, i.e.

spin ½

spin 0

Callan-Gross relation


Quarks are spin-1/2 particles!  
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The sea is NOT SU(3) flavor symmetric.  
!
The gluon is huge at small x  
!
There is an asymmetry between the ubar 
and dbar quarks in the sea. 
!
Note that there are uncertainty bands!!

Comments:

Quark and gluon distribution functions

124

Fabio MaltoniFabio MaltoniGGI Florence - 2017	

Probed at scale Q, sea contains all quarks flavours with mq less than Q.  
For Q ∼1 we expect

And experimentally one finds 

Thus quarks carry only about 50% of proton’s momentum. The rest is carried by gluons.  
Although not directly measured in DIS, gluons participate in other hard scattering 
processes such as large-pt and prompt photon production.

DIS: The parton model
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Probed at scale Q, sea contains all quarks flavours with mq less than Q.  
For Q ∼1 we expect

And experimentally one finds 

Thus quarks carry only about 50% of proton’s momentum. The rest is carried by gluons.  
Although not directly measured in DIS, gluons participate in other hard scattering 
processes such as large-pt and prompt photon production.

DIS: The parton model

123

Quarks carry only 50% of the proton momentum


Evidence for gluons!
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DIS experiments show that virtual photon scatters off massless, free, 
point like, spin-1/2 quarks 


One can factorise the short- and long-distance physics entering this 
process. Long-distance physics absorbed in PDFs. Short distance 
physics described by the hard scattering of the parton with the virtual 
photon. 


∑
a,b

∫ dx1dx2 dΦPS fa(x1)fb(x) ̂σ( ̂s)
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Parton model summary

41

DIS experiments show that virtual photon scatters off massless, free, 
point like, spin-1/2 quarks 


One can factorise the short- and long-distance physics entering this 
process. Long-distance physics absorbed in PDFs. Short distance 
physics described by the hard scattering of the parton with the virtual 
photon. 


Phase-space integral Parton density functions Parton-level cross section

∑
a,b

∫ dx1dx2 dΦPS fa(x1)fb(x) ̂σ( ̂s)
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End of Lecture 1
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• Higher order corrections 
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• QCD improved parton model
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• Monte Carlo generators
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• Searching for New Physics: EFT
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Real

Virtual

Anatomy of a NLO calculation

σ
NLO =

∫
R

|Mreal|
2
dΦ3 +

∫
V

2Re (M0M
∗

virt) dΦ2 = finite!

∫
ddk

(2π)d
. . .

The KLN theorem states that divergences appear because some of the final state are physically 
degenerate but we treated them as different. A final state with a soft gluon is nearly degenerate 
with a final state with no gluon at all (virtual).

65

σNLO = σLO + ∫R
|Mreal |

2 dΦ3 + ∫V
2Re(M0M*vir) dΦ2
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p̄, j

p, i

k, a

p̄, j

p, i

k, a

γ∗, Z γ∗, Z

A = ū(p)!ε(−igs)
−i

!p + !k
Γµv(p̄)ta + ū(p)Γµ

i

!p̄ + !k
(−igs)!εv(p̄)ta

= −gs

[

ū(p)"ε("p + "k)Γµv(p̄)

2p · k
−

ū(p)Γµ("p̄ + "k)"εv(p̄)

2p̄ · k

]

ta

The denominators                              give singularities for collinear (cos θ →1) or soft (k0 →0)  
emission. By neglecting k in the numerators and using the Dirac equation, the amplitude simplifies 
and factorizes over the Born amplitude:

2p · k = p0k0(1 − cos θ)

ABorn = ū(p)Γµv(p̄)Asoft = −gst
a

(

p · ε

p · k
−

p̄ · ε

p̄ · k

)

ABorn

Factorization: Independence of long-wavelength (soft) emission form the hard (short-distance) 
process. Soft emission is universal!!

Let’s consider the real gluon emission 
corrections to the process e+e- →qq. 
The full calculation is a little bit tedious, 
but since we in any case interested in the 
issues arising in the infra-red, we already 
start in that approximation.

Anatomy of a NLO calculation

66
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Let’s consider the real gluon emission 
corrections to the process e+e- →qq. 
The full calculation is a little bit tedious, 
but since we in any case interested in the 
issues arising in the infra-red, we already 
start in that approximation.

Anatomy of a NLO calculation

66

What are those denominators? 

p ⋅ k = p0k0(1 − cosθ)

What happens when the gluon is soft ( ) or collinear ( ) to the quark?k0 → 0 θ → 0

Real corrections:
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Let’s consider the real gluon emission 
corrections to the process e+e- →qq. 
The full calculation is a little bit tedious, 
but since we in any case interested in the 
issues arising in the infra-red, we already 
start in that approximation.
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What happens when the gluon is soft ( ) or collinear ( ) to the quark?k0 → 0 θ → 0
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The denominators                              give singularities for collinear (cos θ →1) or soft (k0 →0)  
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2p · k = p0k0(1 − cos θ)
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Factorization: Independence of long-wavelength (soft) emission form the hard (short-distance) 
process. Soft emission is universal!!

Let’s consider the real gluon emission 
corrections to the process e+e- →qq. 
The full calculation is a little bit tedious, 
but since we in any case interested in the 
issues arising in the infra-red, we already 
start in that approximation.

Anatomy of a NLO calculation

66

Very important property of QCD


Factorisation of long-wavelength 
(soft) emission from the short-
distance (hard) scattering! 


Soft emission factor is universal!
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process. Soft emission is universal!!

Let’s consider the real gluon emission 
corrections to the process e+e- →qq. 
The full calculation is a little bit tedious, 
but since we in any case interested in the 
issues arising in the infra-red, we already 
start in that approximation.

Anatomy of a NLO calculation
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What does that mean for the NLO cross-section?
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σNLO = σLO + ∫R
|Mreal |

2 dΦ3 + ∫V
2Re(M0M*vir) dΦ2
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0 ≤ x1, x2 ≤ 1, and x1 + x2 ≥ 1

Two collinear divergences and a soft one.  Very often you find the integration over phase space 
expressed in terms of x1 and x2, the fraction of energies of the quark and anti-quark:

x1 = 1 − x2x3(1 − cos θ23)/2

x2 = 1 − x1x3(1 − cos θ13)/2

x1 + x2 + x3 = 2

collinear soft

collinear

dσ
VIRT
qq̄ = −σ

Born
qq̄ CF

αS

2π

∫
d cos θ

′
dk′

0

k′

0

1

1 − cos2 θ
2δ(k′

0)[δ(1−cos θ
′)+δ(1+cos θ

′)]+. . .

So we can now predict the divergent part of the virtual  
contribution, while for the finite part an explicit 
calculation is necessary:

Anatomy of a NLO calculation
By squaring the amplitude we obtain:

σqq̄g = CF g2
sσBorn

qq̄

∫
d3k

2k0(2π)3
2

p · p̄

(p · k)(p̄ · k)

= CF
αS

2π
σ

Born
qq̄

∫
d cos θ

dk0

k0

4

(1 − cos θ)(1 + cos θ)

REAL

67
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Soft divergence Collinear divergence
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1
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2δ(k′

0)[δ(1−cos θ
′)+δ(1+cos θ

′)]+. . .

So we can now predict the divergent part of the virtual  
contribution, while for the finite part an explicit 
calculation is necessary:

Anatomy of a NLO calculation
By squaring the amplitude we obtain:

σqq̄g = CF g2
sσBorn

qq̄

∫
d3k

2k0(2π)3
2

p · p̄

(p · k)(p̄ · k)

= CF
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2π
σ
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qq̄

∫
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dk0

k0

4

(1 − cos θ)(1 + cos θ)

REAL
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σqq̄g =
4π2

3s
f2
qCF

αs

2π ∫ ∫ dx1dx2
x2

1 + x2
2

(1 − x1)(1 − x2)

Integral diverges if  or  or ! x1 → 1 x2 → 1 x1, x2 → 1

What happens now?

Why is  the soft 
case?

x1 = x2 = 1
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IR singularities
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IR singularities arise when a parton is too soft or if two partons are collinear

• Infrared divergences arise from interactions that happen a long time after 
the creation of the quark/antiquark pair.


• When distances become comparable to the hadron size of ~1 Fermi, 
quasi-free partons of the perturbative calculation are confined/hadronized 
non-perturbatively. 

How do we proceed with our calculation? 
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Cancellation of divergences
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Real

Virtual

Anatomy of a NLO calculation

σ
NLO =

∫
R

|Mreal|
2
dΦ3 +

∫
V

2Re (M0M
∗

virt) dΦ2 = finite!

∫
ddk

(2π)d
. . .

The KLN theorem states that divergences appear because some of the final state are physically 
degenerate but we treated them as different. A final state with a soft gluon is nearly degenerate 
with a final state with no gluon at all (virtual).

65

Divergent!

Cancellation of IR divergences in R is not a miracle. It follows directly from 
unitarity provided the measurement is inclusive enough 

Infrared finiteness

In the infrared region real and virtual are kinematically equivalent but for a 
(-1) from unitarity

Compute and regulate real and virtual separately, until a cancelation of 
divergences is achieved 

In practice: regularise both 
divergences (with either dimensional 
regularisation or mass regulator)
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Anatomy of a NLO calculation

Summary:

�REAL + �VIRT = 1�1 =?

Solution: regularize the “intermediate” divergences, by giving a gluon a mass (see later) or going to 
d=4-2ε dimensions.

Z 1 1

1� x
dx = � log 0

regularization!
Z 1 (1� x)�2✏

1� x
dx = � 1

2✏

lim
✏!0

(�REAL + �VIRT) = CF
3

4

↵S

⇡
�Born

R1 = R0

(

1 +
αS

π

)

as presented before

�REAL = �BornCF
↵S

2⇡

✓
2

✏2
+

3

✏
+

19

2
� ⇡2

◆

�VIRT = �BornCF
↵S

2⇡

✓
� 2

✏2
� 3

✏
� 8 + ⇡2

◆

This gives:
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Divergent!

Also divergent!
Cancellation of IR divergences in R is not a miracle. It follows directly from 
unitarity provided the measurement is inclusive enough 

Infrared finiteness

In the infrared region real and virtual are kinematically equivalent but for a 
(-1) from unitarity

Compute and regulate real and virtual separately, until a cancelation of 
divergences is achieved 

In practice: regularise both 
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Finite!
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KLN Theorem
Why does this work? 
Kinoshita-Lee-Nauenberg theorem: Infrared singularities in a massless theory cancel 
out after summing over degenerate (initial and final) states 


53

Kinoshita-Lee-Nauenberg theorem: Infrared singularities in a massless 
theory cancel out after summing over degenerate (initial and final) states 

KLN Theorem

Physically a hard parton can not be distinguished from a hard parton plus a 
soft gluon or from two collinear partons with the same energy. They are 
degenerate states. 
Hence, one needs to add them to get a physically sound observable

Physically a hard parton can not be distinguished from a hard parton plus a soft gluon or from 
two collinear partons with the same energy. They are degenerate states. A final state with a soft 
gluon is nearly degenerate with a final state with no gluon at all (virtual) 
Hence, one needs to add all degenerate states to get a physically sound observable 
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Infrared safety
How can we make sure IR divergences cancel?

We need to pick observables which are insensitive to soft and collinear 
radiation. These observables are determined by hard, short-distance physics, 
with long distance effects suppressed by an inverse power of a large 
momentum scale. 


Schematically for an IR safe observable: 


whenever one of the ki/kj becomes soft or ki and kj are collinear 


54

An observable     is infrared and collinear safe if

Infrared safety: definition 

On+1(k1, k2, . . . , ki, kj , . . . kn)� On(k1, k2, . . . ki + kj , . . . kn)

whenever one of the ki/kj becomes soft or ki and kj are collinear 

O

i.e. the observable is insensitive to emission of soft particles or to collinear 
splittings

 3
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Which observables are infrared safe?

55

‣ energy of the hardest particle in the event

‣ multiplicity of gluons 

‣ momentum flow into a cone in rapidity and angle

‣ cross-section for producing one gluon with E > Emin and θ > θmin

‣ jet cross-sections

Infrared safety: examples 

 4

Infrared safe ? 

NO
NO
YES
NO

DEPENDS

Only for infrared safe quantities is a comparison of data and theory well 
defined to all orders in perturbation theory 

See exercises!
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Event shapes

56
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q

q

Event shape variables

pencil-like spherical

74

Event shapes: describe the shape of the event, but are largely insensitive 
to soft and collinear branching  
• widely used to measure 𝛼s  

• measure colour factors  
• test QCD  
• learn about non-perturbative  

physics  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q

q

Event shape variables

pencil-like spherical

74

pencil-like spherical
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Thrust
Event-shape example

57

Sum over all final state particles


Find axis  which maximises this projectionn

T = 1

0 1
0

1

x1

x2

x1 > x2,3

x2 > x1,3

x3 > x1,2

Figure 10: Phase space for e+e− → qq̄g. The requirement that x3 ≤ 1 ensures that
x1 + x2 ≥ 1 by momentum conservation so that physical phase space is the upper half
plane.

or if a soft parton is emitted with momentum

p → 0, (30)

the result should not change.
After the total cross section, the simplest infrared safe observable is the thrust

T = max
!̂n

∑

i |!pi · !̂n|
∑

i |!pi|
, (31)

where the sum is over all the final-state particles and the direction of the unit vector !̂n,
the thrust axis, is chosen to maximize the projection of the momenta of the final-state
particles along that direction.

For a two-jet pencil-like event all the particles lie along the thrust axis giving T = 1.
For a totally spherical event the thrust can be calculated by taking a spherical distribution
of particles in the limit of an infinite number of particles giving T = 1

2 . For three partons
the thrust axis will lie along the direction of the most energetic parton, by momentum
conservation there is an equal contribution to the thrust from the other partons giving
T = max{x1, x2, x3}.

In order to calculate the differential cross section with respect to the thrust for e+e− →
qq̄g we can start from the differential cross section in Eqn. 12. In many cases when we
wish to introduce a new quantity into a differential cross section it is easier to insert the
definition using a δ-function rather than performing a Jacobian transform, in this case we
use

1 =

∫

dT δ(T −max{x1, x2, x3}), (32)

T = 1/2

What happens in an  event?e+e− → qq̄g

Noteby: if one of the partons emits a soft or 
collinear gluon the value of thrust is not 
changing. IRC safe
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Thrust

58
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Figure 10: Phase space for e+e− → qq̄g. The requirement that x3 ≤ 1 ensures that
x1 + x2 ≥ 1 by momentum conservation so that physical phase space is the upper half
plane.

or if a soft parton is emitted with momentum

p → 0, (30)

the result should not change.
After the total cross section, the simplest infrared safe observable is the thrust

T = max
!̂n

∑

i |!pi · !̂n|
∑

i |!pi|
, (31)

where the sum is over all the final-state particles and the direction of the unit vector !̂n,
the thrust axis, is chosen to maximize the projection of the momenta of the final-state
particles along that direction.

For a two-jet pencil-like event all the particles lie along the thrust axis giving T = 1.
For a totally spherical event the thrust can be calculated by taking a spherical distribution
of particles in the limit of an infinite number of particles giving T = 1

2 . For three partons
the thrust axis will lie along the direction of the most energetic parton, by momentum
conservation there is an equal contribution to the thrust from the other partons giving
T = max{x1, x2, x3}.

In order to calculate the differential cross section with respect to the thrust for e+e− →
qq̄g we can start from the differential cross section in Eqn. 12. In many cases when we
wish to introduce a new quantity into a differential cross section it is easier to insert the
definition using a δ-function rather than performing a Jacobian transform, in this case we
use

1 =

∫

dT δ(T −max{x1, x2, x3}), (32)

What happens in an  event?e+e− → qq̄g
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1

σ

dσ

dT
= CF

αS

2π

[

2(3T 2
− 3T + 2)

T (1 − T )
log

(

2T − 1

1 − T

)

−

3(3T − 2)(2 − T )

1 − T

]

.

Calculation of event shape variables: Thrust
The values of the different event-shape variables for different topologies are

O(αS2) corrections (NLO) are also 
known. Comparison with data provide 
test of QCD matrix elements, through 
shape distribution and measurement 
of αS from overall rate. Care must be 
taken around T=1 where  
(a) hadronization effects become large 
and  
(b) large higher order terms of the 
form αSN [log2N-1 (1-T)]/(1-T) need to 
be resummed.  
At lower T multi-jet matrix element 
become important. 

77

Divergent for T=1 
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to give
dσ

dT
= σ0CF

αS

2π

∫

dx1dx2
x2
1 + x2

2

(1− x1)(1− x2)
δ(T −max{x1, x2, x3}), (33)

where σ0 is the leading-order cross section for e+e− → qq̄. This expression can be evalu-
ated in each of the three phase-space regions shown in Fig. 10. First in the region where
x1 > x2,3

dσ

dT

∣
∣
∣
∣
x1>x2,3

= σ0CF
αS

2π

∫ T

2(1−T )

dx2
T 2 + x2

2

(1− T )(1− x2)
(34)

= σ0CF
αS

2π

1

1− T

∫ T

2(1−T )

dx2
T 2 + 1

(1− x2)
− (1 + x2),

where we have used the δ-function to integrate over x1 and the limits on x2 are given by
x2 = x1 = T for the upper limit and T = x1 = x3 = 2 − x1 − x2 = 2 − T − x2 for the
lower limit. Performing the integral gives

dσ

dT

∣
∣
∣
∣
x1>x2,3

= σ0CF
αS

2π

1

1− T

[

(T 2 + 1) ln

(
2T − 1

1− T

)

+ 4− 7T +
3

2
T 2

]

. (35)

The same result is obtained in the region x2 > x1,3 due to the symmetry of the formulae
under x1 ↔ x2.

In the final region we can take the integrals to be over x2,3 and use the δ-function to
eliminate the integral over x3 giving

dσ

dT

∣
∣
∣
∣
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2π
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2(1−T )

dx2
(2− T − x2)2 + x2

2

(T + x2 − 1)(1− x2)
, (36)

= σ0CF
αS
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∫ T

2(1−T )

dx2
1

T

[

(2− T − x2)
2 + x2

2

]
[

1

T + x2 − 1
+

1

1− x2

]

,

= σ0CF
αS

2π

2

T

[

(2− 2T + T 2) ln

(
2T − 1

1− T

)

+ 2T − 3T 2

]

,

where after the integral over x3, x1 = 2−x2−T and the limits are calculated in the same
way as before.

Putting the results from the three regions together gives

dσ

dT
= σ0CF

αS

2π

[
2

T (1− T )
(3T (T − 1) + 2) ln

(
2T − 1

1− T

)

+
3(3T − 2)(T − 2)

1− T

]

. (37)

This result clearly diverges as T → 1, indeed in this limit

1

σ0

dσ

dT
T→1−→ −CF

αS

2π

[
4

(1− T )
ln (1− T ) +

3

1− T

]

. (38)

We can use this result to define a two- and three-jet rate so that the three jet rate is

R3(τ) =

∫ 1−τ

1
2

1

σ0

dσ

dT
τ→0−→ CF

αS

2π
2 ln2 τ, (39)

Large higher order terms of the form  

need to be resummed. 


αN
S

Log2N−1(1 − T)
1 − T

Use either analytic resummation or the parton shower! See later!

Why?
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‣ One of the first tests of QCD was the measurement of the R-ratio, defined as 

‣ Second order QCD correction (NNLO = next-to-neat-to-leading order)

‣ UV divergences do not cancel => Renormalisation procedure: the UV divergence is dealt 
with renormalisation of bare coupling   
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e-

e+

γ*,Z

Let us consider the process: 
e-e+ → hadrons and for a Q2 >> ΛS2.  
At this point (though we will!) we don’t 
have an idea how to calculate the details of 
such a process. 
So let’s take the most inclusive approach 
ever: we just want to count how many 
events with hadrons in the final state there 
are wrt to a pair of muons.  

First improvement:  e+ e- → qq at NLO 
Already a much more difficult calculation!  
There are real and virtual contributions. 
There are: 
* UV divergences coming from loops  
* IR divergences coming from loops and 
real diagrams. Ignore the IR for the moment 
(they cancel anyway) We need some kind of 
trick to regulate the divergences. Like 
dimensional regularization or a cutoff M.  
At the end the result is VERY SIMPLE:

R1 = R0

(

1 +
αS

π

)

No renormalization is needed! Electric charge is left untouched by strong interactions!
45

Ren. group and asymptotic freedom

_
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Second improvement: e+ e- → qq at NNLO 
Extremely difficult calculation!  
Something new happens:

R2 = R0

(

1 +
αS

π
+

[

c + πb0 log
M2

Q2

]

(αS

π

)2
)

The result is explicitly dependent on the 
arbitrary cutoff scale. We need to perform 
normalization of the coupling and since QCD 
is renormalizable we are guaranteed that this 
fixes all the UV problems at this order. αS(µ) = αS + b0 log

M2

µ2
α2

S

e-

e+

γ*,Z

Let us consider the process: 
e-e+ → hadrons and for a Q2 >> ΛS2.  
At this point (though we will!) we don’t 
have an idea how to calculate the details of 
such a process. 
So let’s take the most inclusive approach 
ever: we just want to count how many 
events with hadrons in the final state there 
are wrt to a pair of muons.  
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‣ One of the first tests of QCD was the measurement of the R-ratio, defined as 

‣ Second order QCD correction (NNLO = next-to-neat-to-leading order)
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UV divergences don’t cancel! We need renormalisation! 


Renormalising the bare coupling we have: 
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Comments: 
!
1. Now R2 is finite but depends on an arbitrary scale µ, directly and through αs. We had to 
introduce µ because of the presence of M. 
!
2. Renormalizability guarantees than any physical quantity can be made finite with the SAME 
substitution. If a quantity at LO is AαsN then the UV divergence will be N A b0 log M2 αsN+1. 
!
3. R  is a physical quantity and therefore cannot depend on the arbitrary scale µ!!  One can show 
that at order by order: 

which is obviously verified by Eq. (1).  Choosing µ ≈ Q the logs ...are resummed!

µ2
d

dµ2
Rren = 0 ⇒ Rren(αS(µ),

µ2

Q2
) = Rren(αS(Q), 1)
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11Nc − 2nf

12π
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2 (αS(µ),
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Q2
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(
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αS(µ)

π
+

[

c + πb0 log
µ2

Q2

] (

αS(µ)

π

)2
)

(1)

αS(µ) = αS + b0 log
M2

µ2
α2

S(2) >0
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such a process. 
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ever: we just want to count how many 
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are wrt to a pair of muons.  

First improvement:  e+ e- → qq at NLO 
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Second improvement: e+ e- → qq at NNLO 
Extremely difficult calculation!  
Something new happens:

R2 = R0

(

1 +
αS

π
+

[

c + πb0 log
M2

Q2

]

(αS

π

)2
)

The result is explicitly dependent on the 
arbitrary cutoff scale. We need to perform 
normalization of the coupling and since QCD 
is renormalizable we are guaranteed that this 
fixes all the UV problems at this order. αS(µ) = αS + b0 log
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α2

S
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Let us consider the process: 
e-e+ → hadrons and for a Q2 >> ΛS2.  
At this point (though we will!) we don’t 
have an idea how to calculate the details of 
such a process. 
So let’s take the most inclusive approach 
ever: we just want to count how many 
events with hadrons in the final state there 
are wrt to a pair of muons.  
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‣ One of the first tests of QCD was the measurement of the R-ratio, defined as 
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UV divergences don’t cancel! We need renormalisation! 


Renormalising the bare coupling we have: 
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Comments: 
!
1. Now R2 is finite but depends on an arbitrary scale µ, directly and through αs. We had to 
introduce µ because of the presence of M. 
!
2. Renormalizability guarantees than any physical quantity can be made finite with the SAME 
substitution. If a quantity at LO is AαsN then the UV divergence will be N A b0 log M2 αsN+1. 
!
3. R  is a physical quantity and therefore cannot depend on the arbitrary scale µ!!  One can show 
that at order by order: 

which is obviously verified by Eq. (1).  Choosing µ ≈ Q the logs ...are resummed!
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Asymptotic freedom
Among QFT theories in 4 dimension only the non-Abelian gauge theories are “asymptotically 
free”.  
!
It becomes then natural to promote the global color SU(3) symmetry into a local symmetry where 
color is a charge.  
!
This also hints to the possibility that the color neutrality of the hadrons could have a dynamical 
origin

Q2

αs Perturbative region

In renormalizable QFT’s scale invariance is broken by the renormalization procedure and couplings 
depend logarithmically on scales.

14
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Roughly speaking, quark loop diagrams contribute with Nf negative terms in b0, while the 
gluon loop, diagram gives a positive contribution proportional to Nc, which is dominant 
and make the overall beta function negative.
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in QCD
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β(αS) ≡ µ2
∂αS

∂µ2
= −b0α

2

S ⇒
4.  From (2) one finds that:

αS(µ) =
1

b0 log µ2

Λ2

This gives the running of αS.  Since b0 > 0, this expression make sense for all scales µ>Λ.  
In general one has:

dαS(µ)

d log µ2
= −b0α

2
S(µ) − b1α

3
S(µ) − b2α

4
S(µ) + . . .

where all bi  are finite (renormalization!).  At present we know the bi up to b3 (4 loop calculation!!). 
b1and b2 are renormalization scheme independent. Note that the expression for αS( µ) changes 
accordingly to the loop order.  At two loops we have:

αS(µ) = αS + b0 log
M2

µ2
α2

S b0 =
11Nc − 2nf

12π
(2) >0

αS(µ) =
1

b0 log µ2

Λ2

[

1 −

b1

b2
0

log log µ2/Λ2

log µ2/Λ2

]

48

Ren. group and asymptotic freedom
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Ren. group and asymptotic freedom

1-loop

2-loop
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Running of αs
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BUSSTEPP@50 - QUEEN MARY UNIVERSITY OF LONDON, JANUARY 2020    - COLLIDER PHENOMENOLOGY, M. UBIALI

THE STRONG COUPLING CONSTANT

‣ In pQCD all theoretical  
predictions are expressed in 
terms of the renormalised 
coupling !S(µ2R), a function 
of unphysical 
renormalization scale µR. 

‣ When one takes µR close to 
the scale of the momentum 
transfer Q in a given 
process, then !S(Q2) is 
indicative of the effective 
strength of the strong 
interaction in that process

Measurements of the running coupling

Summarizing:

• overall consistent picture: αs from very 
different observables compatible

• αs is not so small at current scales  

• αs decreases slowly at higher energies 
(logarithmic only) 

• higher order corrections are and will 
remain important 

World average

 13

↵s(MZ) = 0.1181± 0.0011

Many measurements at different scales all leading to very consistent results once 
evolved to the same reference scale, MZ. 
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Going back to the Master formula

62

∑
a,b

∫ dx1dx2 dΦPS fa(x1)fb(x) ̂σ( ̂s)

∑
a,b

∫ dx1dx2 dΦPS fa(x1)fb(x) ̂σ( ̂s, μR)
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QCD improved parton model

63
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At HERA scaling violations were observed!

first ep collider

Scaling violations
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The parton model predicts scaling. Experiment shows:
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The parton model predicts scaling. Experiment shows:
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We got a long way without even invoking QCD. Let’s do it now. 
!
The first diagram to consider is the same as in the parton model: 
!
At NLO we find again both real and virtual corrections:

Our experience so far: have to expect IR divergences!  
In order to make the intermediate steps of the calculation finite, we introduce a 
regulator, which will be removed at the end. 
!
Dimensional regularization is the best choice to perform serious calculations. 
However for illustrative purposes other regulators (that cannot be easily used beyond 
NLO) are better suited. We’ll use here a small quark/gluon mass.

αS corrections to the LO process		        photon-gluon fusion

DIS in QCD

127

What are we missing? 

Scaling violation
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QCD improved parton model
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What do we expect?

Given the computation of R at NLO, we expect IR divergences


We need to regulate these, and hope that they cancel! 
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Once we compute the diagrams we indeed find that UV and soft divergences all cancel, 
but for a collinear divergence arising when the emitted gluon becomes collinear to the 
incoming quark: 

= e2

qx

[

δ(1 − x) +
αS

4π

[

Pqq(x) log
Q2

m2
g

+ Cq
2
(x)

]]

d2σ̂

dxdQ2
|F2

≡ F̂
q
2

d2σ̂

dxdQ2
|F2

≡ F̂
g
2

=
∑

q

e2

qx

[

0 +
αS

4π

[

Pqg(x) log
Q2

m2
q

+ C
g
2
(x)

]]

The presence of large logs is a clear sign that we have a 
residual infrared sensitivity that we have to deal with! 

IR cutoff

DIS in QCD

128

̂Fq
2 = e2

q x[δ(1 − x) +
αs

4π
Pqqlog Q2

m2
g

+ Cq
2 (x)] ̂Fg

2 = e2
q x[0 +

αs

4π
Pqglog Q2

m2
g

+ Cg
2 (x)]

Soft and UV divergences cancel but a collinear divergence arises: 
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̂Fq
2 = e2

q x[δ(1 − x) +
αs

4π
Pqqlog Q2

m2
g

+ Cq
2 (x)] ̂Fg

2 = e2
q x[0 +

αs

4π
Pqglog Q2

m2
g

+ Cg
2 (x)]

Soft and UV divergences cancel but a collinear divergence arises: 

IR cut-off
What are functions  and ?Pqq Pqg

Splitting functions : they give the probability of parton j splitting 
into parton i which carries momentum fraction x of the original parton 

Pij(x)



Eleni Vryonidou STFC HEP school 2022 66

Fabio MaltoniFabio MaltoniInvisibles School 2015 - Miraflores (Madrid) Fabio Maltoni

 The process factorizes in the collinear limit. This procedure it universal! 
 

61
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Notice that what has been roughly called ‘branching probability’ is actually a 
singular factor, so one will need to make sense precisely of this definition.
At the leading contribution to the (n+1)-body cross section the Altarelli-Parisi 
splitting kernels are defined as:

Collinear factorization
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Altarelli-Parisi Splitting functions
Branching has a universal form given by the Altarelli-Parisi splitting 
functions
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These functions are universal for each type of splitting

Altarelli-Parisi Splitting functions
Branching has a universal form given by the Altarelli-Parisi splitting 
functions
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What does this collinear divergence mean?

Residual long-distance physics, not disappearing once real and virtual corrections 
are added. These appear along with the universal splitting functions. 

Can a physical observable be divergent? 

No, as the physical observable is the hadronic structure function: 

67
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So the natural question is: what is it that is going wrong? Do we have IR sensitiveness in a 
physical observable? Well not yet!! 
!
To obtain the physical cross section we have to convolute our partonic results with the 
parton densities, as we have learned from the parton model.  
!
For instance: 

And now comes the magic:  as long as the divergences are universal and do not depend on 
the hard scattering functions but only on the partons involved in the splitting, we can 
reabsorb the dependence on the IR cutoff (once for all!) into fq,0(x):

“Renormalized” parton densities: we have factorized the IR collinear physics into a 
quantity that we cannot calculate but it is universal. So how does the final result looks like?

F q
2
(x, Q2) = x

∑

i=q,q̄

e2

q

[

fi,0(x) +
αS

2π

∫ 1

x

dξ

ξ
fi,0(ξ)

[

Pqq(
x

ξ
) log

Q2

m2
g

+ Cq
2
(
x

ξ
)

]]

fq(x, µf ) ≡ fq,0(x) +
αS

2π

∫ 1

x

dξ

ξ
fq,0(ξ)Pqq(

x

ξ
) log

µ2
f

m2
g

+ zqq

DIS in QCD
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We can absorb the dependence on the IR cutoff into the PDF: 

Renormalised PDFs! 
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Factorisation
Structure function is a measurable object and cannot depend on scale 
at all orders (renormalisation group invariance)

68

Long distance physics is universally factorised into the PDFs, which now depend 
on . PDFs are not calculable in perturbation theory. PDFs are universal, they 
don’t depend on the process. 


Factorisation scale    acts as a cut-off, emissions below  are included in the 
PDFs. 

μf

μf μf
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F q
2
(x, Q2) = x

∑

i=q,q̄

e2

q

∫ 1

x

dξ

ξ
fi(ξ, µ

2

f )

[

δ(1 −

x

ξ
) +

αS(µr)

2π

[

Pqq(
x

ξ
) log

Q2

µ2

f

+ (Cq
2
− zqq)(

x

ξ
)

]]

Questions: 
!
1. Can we exploit the fact that physical quantities have to be scale 
independent to gain information on the pdfs? 
!
2. What exactly have we gained in hiding the large logs in the 
redefined pdf’s?  Aren’t we just hiding the problem?

Factorization

132
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DGLAP
We can’t compute PDFs in perturbation theory but we can predict their evolution 
in scale: 


Universality of splitting functions: we can measure pdfs in one process and use 
them as an input for another process 

69

DGLAP equation

µ2 ⇧f(z, µ2)
⇧µ2

=
⇤ 1

x

dz

z

�s

2⇤
P (z)f

�x

z
, µ2

⇥

Master equation of QCD: we can not compute parton densities, but we 
can predict how they evolve from one scale to another

Universality of splitting functions: we can measure pdfs in one process 
and use them as an input for another process

 Altarelli, Parisi; Gribov-Lipatov; Dokshitzer ’77 

x

 30
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Non-perturbative information that is fitted from a wealth of experimental data 
!

• The pdf is parametrised at a given low scale in terms of an analytic or NN 
function and momentum sum rules are imposed. 
!

• They are evolved through the DGLAP equations:

LO (1974) NLO (1980) NNLO (2004)

PDFs

149

Splitting functions improved in 
perturbation theory!

LO Dokshitzer; Gribov, Lipatov; Altarelli, Parisi (1977) 
NLO Floratos,Ross,Sachrajda; Floratos, Lacaze, Kounnas, 
Gonzalez-Arroyo,Lopez,Yndurain; Curci,Furmanski 
Petronzio, (1981) 
NNLO - Moch, Vermaseren, Vogt, 2004 
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PDF evolution

70

BUSSTEPP@50 - QUEEN MARY UNIVERSITY OF LONDON, JANUARY 2020    - COLLIDER PHENOMENOLOGY, M. UBIALI

Hadronic scale:
global fit of PDFs

High scale:
input to the LHC

Perturbative QCD

fi(x, µ)
<latexit sha1_base64="UoTvaXV9sum6U3SvyTEWy5B3kQ8=">AAAB8XicjVDLSgNBEOz1GeMr6tHLYBAiSNgVQY9BLx4jmAcmS5id9CZDZmaXmVkxhPyFFw+KePVvvPk3Th4HFQULGoqqbrq7olRwY33/w1tYXFpeWc2t5dc3Nre2Czu7dZNkmmGNJSLRzYgaFFxhzXIrsJlqpDIS2IgGlxO/cYfa8ETd2GGKoaQ9xWPOqHXSbdzhpfvjtsyOOoViUPanIH+TIsxR7RTe292EZRKVZYIa0wr81IYjqi1nAsf5dmYwpWxAe9hyVFGJJhxNLx6TQ6d0SZxoV8qSqfp1YkSlMUMZuU5Jbd/89Cbib14rs/F5OOIqzSwqNlsUZ4LYhEzeJ12ukVkxdIQyzd2thPWppsy6kPL/C6F+Ug78cnB9WqxczOPIwT4cQAkCOIMKXEEVasBAwQM8wbNnvEfvxXudtS5485k9+Abv7ROwMJBC</latexit><latexit sha1_base64="UoTvaXV9sum6U3SvyTEWy5B3kQ8=">AAAB8XicjVDLSgNBEOz1GeMr6tHLYBAiSNgVQY9BLx4jmAcmS5id9CZDZmaXmVkxhPyFFw+KePVvvPk3Th4HFQULGoqqbrq7olRwY33/w1tYXFpeWc2t5dc3Nre2Czu7dZNkmmGNJSLRzYgaFFxhzXIrsJlqpDIS2IgGlxO/cYfa8ETd2GGKoaQ9xWPOqHXSbdzhpfvjtsyOOoViUPanIH+TIsxR7RTe292EZRKVZYIa0wr81IYjqi1nAsf5dmYwpWxAe9hyVFGJJhxNLx6TQ6d0SZxoV8qSqfp1YkSlMUMZuU5Jbd/89Cbib14rs/F5OOIqzSwqNlsUZ4LYhEzeJ12ukVkxdIQyzd2thPWppsy6kPL/C6F+Ug78cnB9WqxczOPIwT4cQAkCOIMKXEEVasBAwQM8wbNnvEfvxXudtS5485k9+Abv7ROwMJBC</latexit><latexit sha1_base64="UoTvaXV9sum6U3SvyTEWy5B3kQ8=">AAAB8XicjVDLSgNBEOz1GeMr6tHLYBAiSNgVQY9BLx4jmAcmS5id9CZDZmaXmVkxhPyFFw+KePVvvPk3Th4HFQULGoqqbrq7olRwY33/w1tYXFpeWc2t5dc3Nre2Czu7dZNkmmGNJSLRzYgaFFxhzXIrsJlqpDIS2IgGlxO/cYfa8ETd2GGKoaQ9xWPOqHXSbdzhpfvjtsyOOoViUPanIH+TIsxR7RTe292EZRKVZYIa0wr81IYjqi1nAsf5dmYwpWxAe9hyVFGJJhxNLx6TQ6d0SZxoV8qSqfp1YkSlMUMZuU5Jbd/89Cbib14rs/F5OOIqzSwqNlsUZ4LYhEzeJ12ukVkxdIQyzd2thPWppsy6kPL/C6F+Ug78cnB9WqxczOPIwT4cQAkCOIMKXEEVasBAwQM8wbNnvEfvxXudtS5485k9+Abv7ROwMJBC</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="ZNcyra/vK/tyIkadXggFeZrOmtI=">AAAB5nicbZBLSwMxFIXv1FetVatbN8EiVJAy40aXghuXFewD26Fk0kwbmmSG5I5Yhv4LNy4U8Se589+YPhbaeiDwcU5C7j1RKoVF3//2ChubW9s7xd3SXnn/4LByVG7ZJDOMN1kiE9OJqOVSaN5EgZJ3UsOpiiRvR+PbWd5+4saKRD/gJOWhokMtYsEoOusx7ova80VPZef9StWv+3ORdQiWUIWlGv3KV2+QsExxjUxSa7uBn2KYU4OCST4t9TLLU8rGdMi7DjVV3Ib5fOIpOXPOgMSJcUcjmbu/X+RUWTtRkbupKI7sajYz/8u6GcbXYS50miHXbPFRnEmCCZmtTwbCcIZy4oAyI9yshI2ooQxdSSVXQrC68jq0LuuBXw/ufSjCCZxCDQK4ghu4gwY0gYGGF3iDd896r97Hoq6Ct+ztGP7I+/wBdOKO4w==</latexit><latexit sha1_base64="nqL9neK5yGIh+Xi6xXBIud0eLXU=">AAAB5nicjVDLSgNBEOyNrxijRq9eBoMQQcKul3gUvHiMYB6YLGF20psMmZldZmbFsOQvvHhQxE/y5t84eRxUFCxoKKq66e6KUsGN9f0Pr7C2vrG5Vdwu7ZR39/YrB+W2STLNsMUSkehuRA0KrrBluRXYTTVSGQnsRJOrud+5R214om7tNMVQ0pHiMWfUOukuHvDaw1lfZqeDSjWo+wuQv0kVVmgOKu/9YcIyicoyQY3pBX5qw5xqy5nAWamfGUwpm9AR9hxVVKIJ88XFM3LilCGJE+1KWbJQv07kVBozlZHrlNSOzU9vLv7m9TIbX4Q5V2lmUbHlojgTxCZk/j4Zco3MiqkjlGnubiVsTDVl1oVU+l8I7fN64NeDGx+KcATHUIMAGnAJ19CEFjBQ8AjP8OIZ78l7XcZV8Fa5HcI3eG+feSaO5g==</latexit><latexit sha1_base64="pHfhUa5E/rmkAYBee/OPfxT6pq8=">AAAB8XicjVDLSgNBEOyNrxhfUY9eBoMQQcKuFz0GvXiMYB6YhDA7mU2GzMwuM71iWPIXXjwo4tW/8ebfOHkcVBQsaCiquunuChMpLPr+h5dbWl5ZXcuvFzY2t7Z3irt7DRunhvE6i2VsWiG1XArN6yhQ8lZiOFWh5M1wdDn1m3fcWBHrGxwnvKvoQItIMIpOuo16onx/0lHpca9YCir+DORvUoIFar3ie6cfs1RxjUxSa9uBn2A3owYFk3xS6KSWJ5SN6IC3HdVUcdvNZhdPyJFT+iSKjSuNZKZ+nciosnasQtepKA7tT28q/ua1U4zOu5nQSYpcs/miKJUEYzJ9n/SF4Qzl2BHKjHC3EjakhjJ0IRX+F0LjtBL4leDaL1UvFnHk4QAOoQwBnEEVrqAGdWCg4QGe4Nmz3qP34r3OW3PeYmYfvsF7+wSu8JA+</latexit><latexit sha1_base64="UoTvaXV9sum6U3SvyTEWy5B3kQ8=">AAAB8XicjVDLSgNBEOz1GeMr6tHLYBAiSNgVQY9BLx4jmAcmS5id9CZDZmaXmVkxhPyFFw+KePVvvPk3Th4HFQULGoqqbrq7olRwY33/w1tYXFpeWc2t5dc3Nre2Czu7dZNkmmGNJSLRzYgaFFxhzXIrsJlqpDIS2IgGlxO/cYfa8ETd2GGKoaQ9xWPOqHXSbdzhpfvjtsyOOoViUPanIH+TIsxR7RTe292EZRKVZYIa0wr81IYjqi1nAsf5dmYwpWxAe9hyVFGJJhxNLx6TQ6d0SZxoV8qSqfp1YkSlMUMZuU5Jbd/89Cbib14rs/F5OOIqzSwqNlsUZ4LYhEzeJ12ukVkxdIQyzd2thPWppsy6kPL/C6F+Ug78cnB9WqxczOPIwT4cQAkCOIMKXEEVasBAwQM8wbNnvEfvxXudtS5485k9+Abv7ROwMJBC</latexit><latexit sha1_base64="UoTvaXV9sum6U3SvyTEWy5B3kQ8=">AAAB8XicjVDLSgNBEOz1GeMr6tHLYBAiSNgVQY9BLx4jmAcmS5id9CZDZmaXmVkxhPyFFw+KePVvvPk3Th4HFQULGoqqbrq7olRwY33/w1tYXFpeWc2t5dc3Nre2Czu7dZNkmmGNJSLRzYgaFFxhzXIrsJlqpDIS2IgGlxO/cYfa8ETd2GGKoaQ9xWPOqHXSbdzhpfvjtsyOOoViUPanIH+TIsxR7RTe292EZRKVZYIa0wr81IYjqi1nAsf5dmYwpWxAe9hyVFGJJhxNLx6TQ6d0SZxoV8qSqfp1YkSlMUMZuU5Jbd/89Cbib14rs/F5OOIqzSwqNlsUZ4LYhEzeJ12ukVkxdIQyzd2thPWppsy6kPL/C6F+Ug78cnB9WqxczOPIwT4cQAkCOIMKXEEVasBAwQM8wbNnvEfvxXudtS5485k9+Abv7ROwMJBC</latexit><latexit sha1_base64="UoTvaXV9sum6U3SvyTEWy5B3kQ8=">AAAB8XicjVDLSgNBEOz1GeMr6tHLYBAiSNgVQY9BLx4jmAcmS5id9CZDZmaXmVkxhPyFFw+KePVvvPk3Th4HFQULGoqqbrq7olRwY33/w1tYXFpeWc2t5dc3Nre2Czu7dZNkmmGNJSLRzYgaFFxhzXIrsJlqpDIS2IgGlxO/cYfa8ETd2GGKoaQ9xWPOqHXSbdzhpfvjtsyOOoViUPanIH+TIsxR7RTe292EZRKVZYIa0wr81IYjqi1nAsf5dmYwpWxAe9hyVFGJJhxNLx6TQ6d0SZxoV8qSqfp1YkSlMUMZuU5Jbd/89Cbib14rs/F5OOIqzSwqNlsUZ4LYhEzeJ12ukVkxdIQyzd2thPWppsy6kPL/C6F+Ug78cnB9WqxczOPIwT4cQAkCOIMKXEEVasBAwQM8wbNnvEfvxXudtS5485k9+Abv7ROwMJBC</latexit><latexit sha1_base64="UoTvaXV9sum6U3SvyTEWy5B3kQ8=">AAAB8XicjVDLSgNBEOz1GeMr6tHLYBAiSNgVQY9BLx4jmAcmS5id9CZDZmaXmVkxhPyFFw+KePVvvPk3Th4HFQULGoqqbrq7olRwY33/w1tYXFpeWc2t5dc3Nre2Czu7dZNkmmGNJSLRzYgaFFxhzXIrsJlqpDIS2IgGlxO/cYfa8ETd2GGKoaQ9xWPOqHXSbdzhpfvjtsyOOoViUPanIH+TIsxR7RTe292EZRKVZYIa0wr81IYjqi1nAsf5dmYwpWxAe9hyVFGJJhxNLx6TQ6d0SZxoV8qSqfp1YkSlMUMZuU5Jbd/89Cbib14rs/F5OOIqzSwqNlsUZ4LYhEzeJ12ukVkxdIQyzd2thPWppsy6kPL/C6F+Ug78cnB9WqxczOPIwT4cQAkCOIMKXEEVasBAwQM8wbNnvEfvxXudtS5485k9+Abv7ROwMJBC</latexit><latexit sha1_base64="UoTvaXV9sum6U3SvyTEWy5B3kQ8=">AAAB8XicjVDLSgNBEOz1GeMr6tHLYBAiSNgVQY9BLx4jmAcmS5id9CZDZmaXmVkxhPyFFw+KePVvvPk3Th4HFQULGoqqbrq7olRwY33/w1tYXFpeWc2t5dc3Nre2Czu7dZNkmmGNJSLRzYgaFFxhzXIrsJlqpDIS2IgGlxO/cYfa8ETd2GGKoaQ9xWPOqHXSbdzhpfvjtsyOOoViUPanIH+TIsxR7RTe292EZRKVZYIa0wr81IYjqi1nAsf5dmYwpWxAe9hyVFGJJhxNLx6TQ6d0SZxoV8qSqfp1YkSlMUMZuU5Jbd/89Cbib14rs/F5OOIqzSwqNlsUZ4LYhEzeJ12ukVkxdIQyzd2thPWppsy6kPL/C6F+Ug78cnB9WqxczOPIwT4cQAkCOIMKXEEVasBAwQM8wbNnvEfvxXudtS5485k9+Abv7ROwMJBC</latexit><latexit sha1_base64="UoTvaXV9sum6U3SvyTEWy5B3kQ8=">AAAB8XicjVDLSgNBEOz1GeMr6tHLYBAiSNgVQY9BLx4jmAcmS5id9CZDZmaXmVkxhPyFFw+KePVvvPk3Th4HFQULGoqqbrq7olRwY33/w1tYXFpeWc2t5dc3Nre2Czu7dZNkmmGNJSLRzYgaFFxhzXIrsJlqpDIS2IgGlxO/cYfa8ETd2GGKoaQ9xWPOqHXSbdzhpfvjtsyOOoViUPanIH+TIsxR7RTe292EZRKVZYIa0wr81IYjqi1nAsf5dmYwpWxAe9hyVFGJJhxNLx6TQ6d0SZxoV8qSqfp1YkSlMUMZuU5Jbd/89Cbib14rs/F5OOIqzSwqNlsUZ4LYhEzeJ12ukVkxdIQyzd2thPWppsy6kPL/C6F+Ug78cnB9WqxczOPIwT4cQAkCOIMKXEEVasBAwQM8wbNnvEfvxXudtS5485k9+Abv7ROwMJBC</latexit>

pQCD

fi(x, µ)
<latexit sha1_base64="lU5j/KcQHF6dfAFFaeIfQpG1Nes=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahgpTdKuix6MVjBfuB7VKyabYNTbJLkhXL0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kPYY+Wns65ITnvFkltxZ0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dXTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDKT5mME0MlmS8KE45MhKbvoz5TlBg+tgQTxeytiAyxwsTYkAo2BG/x5WXSrFa884p7d1GqXWdx5OEIjqEMHlxCDW6hDg0gIOEZXuHN0c6L8+58zFtzTjZzCH/gfP4ArHWQQQ==</latexit>



Eleni Vryonidou STFC HEP school 2022

PDF extraction

We can’t compute PDFs in perturbation theory but we can extract them from data, and use 
DGLAP equations to evolve them to different scales.

• Choose experimental data to fit and include all info on correlations 

Theory settings: perturbative order, EW corrections, intrinsic heavy quarks, , quark 
masses value and scheme 


• Choose a starting scale Q0 where pQCD applies 


• Parametrise independent quarks and gluon distributions at the starting scale 


• Solve DGLAP equations from initial scale to scales of experimental data and build up 
observables 


• Fit PDFs to data

• Provide PDF error sets to compute PDF uncertainties 

αs
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Data for PDF determination
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Up to O(!s) corrections
DISENTANGLING PDFS WITH EXPERIMENTAL DATA
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LHC kinematics
How can we tell which x data probes?

For the production of a particle of mass M:

73Fabio MaltoniFabio MaltoniGGI Florence - 2017	

We describe the collision in terms of parton 
energies 
!
E1= x1 Ebeam 
E2= x2 Ebeam 
!
!
!
!
Obviously the partonic c.m.s. frame will be in  
general boosted. Let us say that the two partons 
annihilate into a particle of mass M.   
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See exercises!
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Data complementarity
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LHC KINEMATICS
 Inclusive jets and dijets  
         (medium/large x) 
 Isolated photon and γ+jets  
         (medium/large x) 
 Top pair production (large x) 
 High pT V(+jets) distribution  
          (small/medium x) 
  
 High pT W(+jets) ratios  
         (medium/large x) 
 W and Z production  
         (medium x) 
 Low and high mass Drell-Yan  
         (small and large x) 
 Wc (strangeness at medium x) 

 Low and high mass Drell-Yan  
 WW production
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From. M. Ubiali
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Modern PDFs
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MODERN PDF SETS

• Post- Run I now exist from three major global fitters 

CT18 MSTH20 NNPDF3.1

• LHC data also playing key role in ABM fits 
• ATLAS/CMS keep providing their own PDF 
analyses based on more restricted PDF 
parametrizations (XFitter) 

Different collaborations, predictions usually computed with different PDFs 
to extract an uncertainty envelope. 
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Impact of PDF uncertainties
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PHENO IMPLICATION OF PDF UNCERTAINTIES
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Yellow Report 3 (2013)
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Higgs physics
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Reduced  (still often dominant) 
PDF uncertainties

σ@13 TeV

48.5 pb

3.78 pb

1.37 pb

0.88 pb

0.51 pb

Yellow Report 4 (2016)

Higgs physics

PHENO IMPLICATION OF PDF UNCERTAINTIES

Yellow Report 3 (2013) Yellow Report 4 (2016) 

Progress in PDFs!
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Parton luminosities and collider reach
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PARTON LUMINOSITIES
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<latexit sha1_base64="wb07r4UtD5qxwJKKlnC+5Ry3gxw="></latexit>

•Depending on the mass of the 
final state object and of the centre 
of mass energy, either gluon of 
quark dominate
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Going back to the Master formula

78

∑
a,b

∫ dx1dx2 dΦPS fa(x1)fb(x) ̂σ( ̂s)

∑
a,b

∫ dx1dx2 dΦPS fa(x1)fb(x) ̂σ( ̂s, μR)
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Going back to the Master formula
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End of Lecture 2


