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Motivation - Monte Carlo Event Generators (MCEQ)

QCD correctly describes strong interactions in each energy range but its complex mathematical
structure makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke ™

[See talks on MC generators by A. Masouminia, E. Bothmann and P. Skands]
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Why hadronization?

QCD correctly describes strong interactions in each energy range but its complex mathematical
structure makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke'\Y

Hadronization;
one of the least understood elements of MCEG
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Motivation - Hadronization

Hadronization:
-> Increased control of perturbative corrections = more often LHC measurements are

limited by non-perturbative components, such as hadronization.
W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
Extraction of the strong coupling in [M. Johnson, D. Maitre, Phys.Rev. D97 (2018) no.5]
Top mass [S. Argyropoulos, T. Sjostrand, JHEP 1411 (2014) 043]

Pier Moni’s talk
FCC Physics Workshop 2023

» However, hadronisation remains the main bottleneck
> e.g. thrust in Higgs decays (MC variation in plot) E“
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St ri N g M Od el | N N UtSh el | [Andersson, Gustafson, Ingelman, Sjostrand, Phys.Rept.97(1983)31]

Originally invented without perturbative physics of parton showers in mind.

We start with 2-jet events in
e+ e- > hadrons.

Self coupling of gluons Linear static potential:
“attractive field line”
F(r)~const=k=x1GeV/fm <= V(r)=xkr

QED FIELD LINES Picture supported by lattice QCD

W V(r) simplified colour
representation:
quenched QCD

QCD FIELD LINES

/
A%

full QCD

L F E rr ; r
q ¢ y 9 4
F r 3 r

q. .4q

1+1 - dim. object: string

Lund string model: like rubber band that is pulled apart and breaks into pieces

T\ - -
N .

N O
- e

N\

L] .

; D
o .
y time
e quark Y
 antiquark y
o pair creation space Plots from T. Sjostrand
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String Model in nutshell

String motion

From linear static potential V(r) = xr and linearity
between space-time and energy-momentum:

dE
dz

dp,
dt

dp,
dz

dE g
gel

We get a “YoYo" state which we interpret as a meson.

[Andersson, Gustafson, Ingelman, Sjostrand, Phys.Rept.97(1983)31]

String breakdowns

The quarks obtain a mass and a transverse momentum
in the breakup through a tunneling mechanism

q q’ ‘—‘:’—’ a’ q a q’ -~ > a’ q

.-

d=m q/k
m gy >0

mq = 0

with a probability:

. 2 2
™m TP ™m
P ox exp ( Lq) = exp < Lq) exp </ q)
K K K

e Suppression of heavy quarks:
uu:dd:ss:cc=1:1:0.3:10™"
e Common Gaussian pT spectrum, <pT>~ 0.4 GeV
e Diquark (g - qg breakups) ~ antiquark
= simple model for baryon production.

Iterative process (left-right symmetry) leads to
distribution of momentum fraction taken by each

hadron as: . 2
f(z) oc 122 exp(—bi)
Z P4

Summary [for a recent progress see P. Skands talk]:

String model has very good energy-momentum picture however it is unpredictive in
understanding of hadron mass effects = many parameters, 10-30 depending on how you count.
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Cluster model in nutshell [Webber NPB238(1984)492]

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization.
QCD pre-confinement discovered by Amati & Veneziano [Phys.Lett.B 83 (1979) 87-92]:

e QCD provide pre-confinement of colour
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Cluster model in nutshell [Webber NPB238(1984)492]

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization.
QCD pre-confinement discovered by Amati & Veneziano [Phys.Lett.B 83 (1979) 87-92]:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters
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Cluster model in nutshell [Webber NPB238(1984)492]

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization.
QCD pre-confinement discovered by Amati & Veneziano [Phys.Lett.B 83 (1979) 87-92]:

[S. Gieseke, A. Ribon, MH Seymouir,

P Stephens, B Webber JHEP 0402 (2004) 005] e QCD provide pre-confinement of colour
o0 A . Q=35GeV
0.8 I Q=091.2GeV ] e Colour-singlet pair end up close in phase space and
0.7 |- Q=189GeV -~ form highly excited hadronic states, the clusters
0.6 - O 1000 GeV
0.5 - ‘ - e Pre-confinement states that the spectra of clusters
04 | | | are independent of the hard process and energy of
03 L | the collision
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Cluster model in nutshell [Webber NPB238(1984)492]

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization.
QCD pre-confinement discovered by Amati & Veneziano [Phys.Lett.B 83 (1979) 87-92]:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons
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Cluster model in nutshell

[Webber NPB238(1984)492]

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization.
QCD pre-confinement discovered by Amati & Veneziano [Phys.Lett.B 83 (1979) 87-92]:

[S. Gieseke, A. Ribon, MH Seymouir,
P Stephens, B Webber JHEP 0402 (2004) 005]
0.9 T LI ] T T T T L [ T T T
2 = 35Ge
0.8 L Q = 35GeV

Q=912GeV
0.7 b Q =189GeV
0.6 - Q = 1000 GeV
0.5 N
04 |
0.3 | N
0.2 | N
0.1 | N
0 o ]
1 10
M/GeV

QCD provide pre-confinement of colour

Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

Peaked at low mass (1-10 GeV) typically decay into 2
hadrons

e Small fraction of clusters too heavy for isotropic two-body decay,
heavy cluster decay first into lighter cluster C » CC, or radiate a

hadron C » HC, it is rather string-like.

e ~15% of primary clusters get split but ~ 50% of hadrons come
from them! (see S. Kiebacher talk for some progress)

[For a recent progress see A. Masouminia, S. Kiebacher talks]

QCD@LHC 2023, Durham
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String vs Cluster model

program PYTHIA Herwig
model string cluster
energy—momentum picture powerful simple
predictive unpredictive
parameters few many
flavour composition messy simple
unpredictive in-between
parameters many few

Taken from T. Sjostrand
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Hadronization models

Hadronization:
Early 1980's Early 2020's
(see talks by P. Skands, A. Masouminia, S. Kiebacher,...) (lot of progress in ML)
/ STRING Hadronization ] \ / CLUSTER Hadronization ] \
\ - = =

) | 4

N4
ML

Idea of using Machine Learning (ML) for hadronization.
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Motivation for Machine learning hadronization

Idea of using Machine Learning (ML) for hadronization.

e Existing hadronization models are highly parameterized functions.

e Hadronization is a fitting problem [Ch. Oppedisano talk]

- Can ML hadronization be more flexible?

- Can ML hadronization extract more information from the data?

[can accommodate unbinned and high-dimensional inputs]

° NINPDF

NNPDF used successfully ML to nonperturbative Parton Density Functions (PDF).

Hadronization is closely related to fragmentation functions (FF) which were considered the

counterpart of PDFs.

T gg luminosity
[F. Giuli talk] VS =14 ToV
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Recent progress: Machine learning hadronization

First steps for ML hadronization:

HADML - [A. Ghosh, Xi. Ju, B. Nachman AS, Phys.Rev.D 106 (2022) 9]

MLhad - [P. llten, T. Menzo, A. Youssef and J. Zupan, SciPost Phys. 14, 027 (2023)]

MLhad

HADML

Deep generative
model:

Variational Autoencoder

Generative Adversarial
Networks

Trained on:

String model

Cluster model

Recent progress:

“Reweighting Monte Carlo
Predictions and Automated
Fragmentation Variations in
Pythia 8"

[Bierlich, llten, Menzo, Mrenna,
Szewc, Wilkinson, Youssef,
Zupan, 2308.13459]

(see P. Skands talk)

“Fitting a Deep
Generative
Hadronization Model”

[J. Chan, X. Ju, A. Kania, B.
Nachman, V. Sangli and
A.S, 2305.17169]

QCD@LHC 2023, Durham

Andrzej Siodmok



https://arxiv.org/abs/2305.17169

Road map for today

, HadML* v1 Generator Z HadML v2: Stress Test :
PRD 106 (2022) 096020 (this paper)
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QCD@LHC 2023, Durham Andrzej Siodmok



Road map for today

HadML* v1 Generator

PRD 106 (2022) 096020
HadML
—» Hadrons

el

Parton =% Cluster I Discriminator
I Cluster I fiaitons
Frag
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons

QCD@LHC 2023, Durham Andrzej Siodmok



Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

QCD provide pre-confinement of colour

Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

Peaked at low mass (1-10 GeV) typically decay into 2
hadrons

ML hadronization
1st step: generate kinematics of a cluster decay:

How?
Use Generative Adversarial Networks (GAN)

QCD@LHC 2023, Durham
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What is a deep generative model?

A generator is nothing other than a function
that maps random numbers to structure.

= = = j_*m

Deep generative models: the map is a deep neural network.

QCD@LHC 2023, Durham Andrzej Siodmok



Our tool of choice: GANs

[Goodfellow et al. “Generative adversarial nets”. arxiv:1406.2661]

Generative Adversarial Networks (GANS):
A two-network game where one maps noise to structure
and one classifies images as fake or real.

0 2
1 2
2 1033
[}
el 3 &
[ o *
— 102
3
S 6
h=3
7 10!
8
9
10 10°
. 11
nO|Se 012345678 91011
n Cell ID

{real,fake}

When D is maximally  :
confused, G will be  ::
a good generator "g w_ Physics-basec
u simulator or data

012 3456 7 8 91011
n Cell IN
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Adversarial Networks

Arthur Lee Samuel (1959) wrote a program that learnt to play checkers well enough to beat him.

97
I/l/l%
/I/I%I/
,/l/l/l/
%-/-%-%Q
Q7. 7 7
/l/@%l/

7 7 707

He popularized the term "machine learning" in 1959.

The program chose its move based on a minimax strategy, meaning it made the move assuming
that the opponent was trying to optimize the value of the same function from its point of view.
He also had it play thousands of games against itself as another way of learning.

QCD@LHC 2023, Durham Andrzej Siodmok



Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

QCD@LHC 2023, Durham Andrzej Siodmok



Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How?

We have a conditional
GAN, with cluster
4-vector input and two
hadron 4-vector outputs.

Conditional
Parameters

Noise

_ﬂEP{ G

Generative Adversarial
«smw Network
rse

Samples

=

~f..+ D |

¢ o !
v

IsD
Correct?
Dlscrwmmato4

Generated
Fake
Samples

Generator

Fine Tune Training

QCD@LHC 2023, Durham
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How?

We have a conditional
GAN, with cluster
4-vector input and two
hadron 4-vector outputs.

Generative Adversarial
s Network
rse

Samples

]
Conditional
Parameters

~f..+ D |

S
v

_ﬂEP{ G

Generator

Discrwmmato4

Generated
Fake
Samples

IsD
Correct?

Fine Tune Training

Noise

(&

Training data:

ris

e~ collisions at

V3 = 91.2 GeV

QCD@LHC 2023, Durham

TO(E, By Diys D)

Cluster (E, pz, py, D=)

qTO(Ea p-'L'3 py* pl)

Simplification:
considering only
pions and generating
two angles in the
cluster rest frame.
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Architecture: conditional GAN

Generator and the Discriminator are composed of two-layer perceptron
(each a fully connected, hidden size 256, a batch normalization layer, LeakyRelLU activation function)

Generator

Hidden layer 1 Hidden layer 2

Input

Cluster (E, pz, py, p-) and 10 noise features sampled from a Gaussian distribution

Output (in the cluster frame)

¢ ) pglar angle we reconstruct the four vectors of
¢ - azimuthalangle the two outgoing hadrons
Discriminator
Input

d) and @ labeled as signal (generated by Herwig) or background (generated by Generator)

Output

Score that is higher for events from Herwig and lower for events from the Generator

QCD@LHC 2023, Durham Andrzej Siodmok



Training HADML vl

Losses

0.9 1
0.8 1
0.7 1

0.6 1

—— Discriminator Loss /2 [ 0.6
Generator Loss
= 0.5
I un
L 0.4 8
; =
()
ahed
&
()
703 g
(O
[ =
-
e
TOQCD
0.1
il <
— [
— 3+ 0.0
0 200 400 600 800 1000
Epochs

We have a conditional
GAN, with cluster
4-vector input and two
hadron 4-vector outputs.

Simplification:
considering only pions
and generating two
angles in the cluster rest
frame.

This is a typical
learning curve for
CAN training

Andrzej Siodmok
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Integration into Herwig

We extract
clusters + hadrons

N Ny |
¥ ns o
A python’ Training Event generation

Re-insert the model
back into H7

ONNX
RUNTIME

This then allows us to run a full event generator and produce plots

QCD@LHC 2023, Durham Andrzej Siodmok 31



Performance: Pions

Low-level Validation
(similar to training data)

e~ collisions at

VS = 91.2 GeV

&

ar© ar°
VS qr° kinematic variables
qr© q1°

T . - . + 0 R . - . 0
Pseudorapidity distribution of 7~ and 7 multiplicity, Pert=0 Transverse momentum distribution 77, Pert=0

_’\\1—]IIIIII]IIIIII[IIII[IIII—gl:—lill]IIIIIIIIIII[IIIIII
S L B =
K = =il 1 B Hz
) i< 4 K B
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" 08— — 2100 T B
5 - i B
NG - — = :
Lo X il Lo
2
0.6 — = 10 " E
- = ; ] M-
0.4 (— - 10 7 E
B - 4_—
0.2 — 1 10 B
& - 5
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Performance: Energy of the collisions

Low-level Validation

0 0
(beyond training data different energy) m am
e"e” collisions at VS a9 kinematic variables
Vs =192 GeV
ar© qTO

Pseudorapidity distribution of 77~ and n° multiplicity, Pert=o0 Transverse momentum distribution 71°, Pert=o
= 08 el T T T I T T T T | T T T T I T T T T I T T T =1 b E T T T T T T T T I T T T T I T T T T ] T T T T3
= c . 1 & E E
B o8 Hy7, 192 GeV - I - —+— Hy, 192 GeV :
. E —+— H7+HADML,192GeVy 5§ _ -1 | —+— Hy+HADML, 192 GeV |
5 06— — 3 = -
e C =] 2 = =
= 0.5 — = e T .
> F = 102 5
04 £ = : -
03 _f 1072 =
0.2 — — C 7
= B 10 4 g —
0.1 — — 5 3
o) E 1 | L | l Il 1 l | 3 N ! ]|
0 1 2 3 4 5 (0] 50
Ui Pr [GeV]
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Performance: All Hadrons

Low-level Validation

(beyond training data different hadrons) hi h1
e"e” collisions at VS h kinematic variables
Vs = 91.2 GeV
h2 h2

As a crude “full” model, we simply take the PIDs
from Herwig and the kinematics from the GAN.

Pseudorapidity distribution of kaon multiplicity Transverse momentum distribution of kaon
= LI L I B e B B = L L B B B | L N
3 o8 —— g R AL
S +— Hz+HADML S0 H7+HADML
(7)) Q S
c 5 o i S -}
10 " E e
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10 7 F E
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- i :
10 4 S 41 ¥ -
E UL E
: M ]
w e b b by WIS
o 10 20 30 40 50
7 rr [GeV]
Iransverse momentum distribution of A
= - - L PN Eaar S ) I | I T | T | [ T 17T | v T
Z =4 < I
RS ] Tae? ,Eil. Hy
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] 5 - k M
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T 1
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- . | L THTHY
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2
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LEP DELPHI Data

With a “full” model, we can compare directly to data!

Performance: Data!

IIIIIIIIII

—+— Data
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[IIII
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N.B. we have trained on H7, so we don't expect
to be any better than it at modeling the data.
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Road map for today

HadML* v1 Generator

PRD 106 (2022) 096020
HadML
—» Hadrons

el

Parton =% Cluster I Discriminator
I Cluster I fiaitons
Frag
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Road map for today

HadML v2: Closure Test

(this paper)
—» Hadrons
Parton =% Cluster —»
Event —» Parton =% Cluster =—» —» Hadrons
Parton = Cluster =9
—» Hadrons

T,

{
11

HadML v2: Stress Test
(this paper)

Parton =% Cluster —p

Event =—» Parton =% Cluster =9

Parton = Cluster =—»

Parton = Cluster —»

Event = Parton =% Cluster =%

Parton = Cluster —»

—» Hadrons

—p Hadrons

—» Hadrons

—» Hadrons

J —» Hadrons

—» Hadrons

|

Protocol for fitting a deep generative hadronization model in a realistic data setting, where we

only have access to a set of hadrons in data.

QCD@LHC 2023, Durham
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Training HADML v2

Losses

1.4 4

1.24

1.0+

0.8 1

0.6 -

0.4 ~

- Discriminator Loss
Generator Loss

T
&
un

T
&
IS

™~

0.7

L]
b
o

Best Wasserstein Distance

0.1

Now, the generator is
local (per cluster), but
the discriminator is
global (whole event).

Discriminator is a
permutation-invariant
architecture called
Deep Sets.

Simplification only

Pions
0 1000 2000 3000 4000 5000 6000

Epochs

Still works'!
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Performance
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Number of Hadrons

Performance: going beyond inputs and outputs

3.5 - - v v
nital GAN H7 Cluster Initial GAN H7 Cluster
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AR(hadron, neighbor) mMin(Epadron, Eneighbor)(Enadron + Eneighbor)
g

MINIMAL AR? = A¢? + An?

A key advantage of this fitting protocol over other methods is that it can accommodate
unbinned and high-dimensional inputs.

The approach could also be used to fit (without binning) data to a parametric physics
model (for example cluster) as well.
However, this would require making the cluster model differentiable.
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, HadML* v1 Generator Z HadML v2: Stress Test :
PRD 106 (2022) 096020 (this paper)
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e First ML hadronization models: HADML and MLHAD
e Recent progress: MLHAD
-HADML.: “Data fitting protocol” 770

- MLHAD: “Reweighting Monte Carlo Predictions and
Automated Fragmentation Variations” - see P. Skands talk

We have made significant progress, I
but there are still multiple steps to build and tune a full-fledged
hadronization model.

What is next for HADML?

e Number of technical and methodological step needed:
- Directly accommodate multiple hadron species with their relative probabilities
-> Hyperparameter optimization, including the investigation of alternative generative models
-> More flexible model with a capacity to mimic the cluster or string models as well as go
beyond either model.

There is still a multi-year program ahead of us!

Early 1980's Early 2020's

STRING Hadronization CLUSTER Hadronization

¢ o
) W \;r -
| o .
y 4 a

r/ - | S

HADML

So Stay tuned!
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Discriminator HadML vl vs v2

HadML vi

The loss function:

L=— > (og(D(r()+log(l—D(G ()

A~HERWIG, z~p(z)

HadML v2

The discriminator function is modified, we parameterize is as a Deep Sets model

1 mn
Delx)=F [ = b (h;,¢ CWE
E () (n; (h wD<p),wF>

® embeds a set of hadrons into a fixed-length latent space and F' acts on the average

invariant under
permutations of
hadrons

L=- Z log (DE (x)) — Z log (1 — Dg ({G (2,M)}))

x~data {G}~HERWIG, z~p(2)

The approach could also be used to fit (without binning) data to a parametric physics model (for
example cluster) as well. However, this would require making the cluster model differentiable.
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Wasserstein distance

The Wasserstein distance
e For discrete probability distributions, the Wasserstein distance is called the earth mover’s distance (EMD):
e EMD is the minimal total amount of work it takes to transform one heap into the other.

W(P,Q) = min B(y)
YEIl

e Work is defined as the amount of earth in a chunk times the distance it was moved.

B(y) = Z V(xp'xq)”xp - xq”

XpXq

B = [

Best “moving plans” of this example

5th Inter-experiment Machine Learning Workshop



Minimax Loss

In the paper that introduced GANs, the generator tries to minimize the following function while the discriminator tries to
maximize it:

E, [log(D(x))] + E.[log(1 — D(G(2)))]

In this function:

D(x) is the discriminator's estimate of the probability that real data instance x is real.

Ey is the expected value over all real data instances.

G(z) is the generator's output when given noise z.

D(G(z)) isthe discriminator's estimate of the probability that a fake instance is real.

E, is the expected value over all random inputs to the generator (in effect, the expected value over all generated

fake instances G(z)).

» The formula derives from the cross-entropy between the real and generated distributions.

The generator can't directly affect the log(D(x)) term in the function, so, for the generator, minimizing the loss is
equivalent to minimizing log(1 - D(G(z))) .
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