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What are event weights?

Example: prediction for dijet production cross section
© Relate to partonic cross section

LO
02 jets = 02 partons

@ Simulate partonic scattering events with weights w;

» Computed from scattering matrix elements + PDF + phase space factor
» Weights proportional to probability: w; > 0
» Sum of weights gives the cross section:

02 partons = E Wi
i
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What are event weights?

Example: prediction for dijet production cross section
© Relate to partonic cross section

LO
O2jets = 02 partons

@ Simulate partonic scattering events

02 partons = E Wi
i

02 partons, 03 partons NOt separately observable:

Events weights can be either positive or negative ]
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Why are negative event weights a problem?

Number of required events to reach given accuracy:

Number of required events
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Why are negative event weights a problem?
Number of required events to reach given accuracy:

Number of required events
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[BLACKHAT + SHERPA 2013 + 2017]
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Why are negative event weights a problem?

Event simulation chain
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Why are negative event weights a problem?

Event simulation chain
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Why are negative event weights a problem?

Event simulation chain

w >0
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Why are negative event weights a problem?

[Andersen, Gltschow, Maier, Prestel 2020]
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Why are negative event weights a problem?
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Observables

Events in 2D projection of phase space:

w = +o00
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Observables
Events in 2D projection of phase space:
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Observables O:
e Select region D in phase space > experimental resolution
* 0 =73 ,cpw > 0 with sufficient statistics

e.g. histogram bins

Redistribute weights without affecting any observable
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Cell resampling
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Cell resampling:
Repeatedly

@ Choose seed event with w < 0 for cell C
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Cell resampling
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Cell resampling:
Repeatedly

@ Choose seed event with w < 0 for cell C
© lteratively add nearest event to cell until 3 ;.. w; > 0
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Cell resampling
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Cell resampling:
Repeatedly

@ Choose seed event with w < 0 for cell C

© lteratively add nearest event to cell until 3 ;.o w; >0

© Redistribute weights: w; — w = 2 jec W

#eventsinC =
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Cell resampling

Cell resampling:
Repeatedly
@ Choose seed event with w < 0 for cell C
© lteratively add nearest event to cell until > ;.o w; > 0

© Redistribute weights: w; — w = ;=< > 0

Sufficient statistics: cell size < experimental resolution

Otherwise: limit cell size, accept w < 0
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Cell resampling
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Cell resampling:
Repeatedly
@ Choose seed event with w < 0 for cell C
© lteratively add nearest event to cell until 3 ;.. w; > 0
What does “nearest” mean?
© Redistribute weights: w; — w = %(% >0
Sufficient statistics: cell size < experimental resolution

Otherwise: limit cell size, accept w < 0
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Distances in phase space

Example

0: jet O photon

e
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Distances in phase space

Example

0: jet O photon

e

Py=00
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Distances in phase space

Example

O
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Distances in phase space

Example

0: jet  (O: photon

e e

d(e,e')=dl(sj,s;) + d(s,,5))
= d(sj SJ/) + d(py, Gy)
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Distances in phase space

Example

O: jet O photon

e e

d(e,e')=d(s;s) + d(sy, s))
=min[d(pj1. gj1) + d(pj2. 9j2). d(pj1. gj2) + d(pj2, gj1)] + d(py. ay)
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Distances in phase space

Example

O: jet O photon

e e

d(e.e')=d(s;,s) + d(sy. s,)
=d(pj1, gj1) + d(pj2, gj2) + d(py, Gy)
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Distances in phase space
Example

O: jet O photon

e e

d(e,e')=d(s;,s}) + d(sy. s,)
=0, . = . = . .
=B — Gl + |2 — G2l + |5y — Gyl
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Distances in phase space

Concrete implementation jets electrons

© Collect all infrared-safe objects in event eintosets { s1 , 52, ..., st}

d(e, e') = Z d(st, sé)
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Distances in phase space ,
jets electrons

/

Objects in s; have four-momenta ( g , ‘ .99, 0,..., 0)

P
d(se.st) = min > de(pi, dos)
Rt
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Distances in phase space ,
jets electrons

/

t=1
@ Objects in s; have four-momenta (py, ... ........., pp)
Objects in s; have four-momenta ( q1>,<... .99, 0,..., 0)

P

d(st, s1) = rrensn Zdt(Pi:qa(i))
T
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Distances in phase space

jets electrons
© Collect all infrared-safe objects ineventeintosets { s1 , s> ,...,sr}
T
d(e, &) = Z d(st, st)
t=1
@ Objects in s; have four-momenta (p1, ... ......... , PP )
Objects in s; have four-momenta ( g1, ...7¢@,0,...50)

P
d(st, sp) = arrewisnp g de(pi, 4o (i)

Efficient minimisation: Hungarian algorithm pacobi 1s90;
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Distances in phase space .
jets electrons

/

© Collect all infrared-safe objects in event eintosets { s1 , s ,...,sr}
T
d(e, €)= Z d(st, st)
t=1

©® Objects in s; have four-momenta ( py , ... ......... . pp)
Objects in s; have four-momenta (g1, ... ,¢@,0,...,0)

P
d(st, sp) = Urrgwlsr:: ; de(pi, 4o(i))

©® Choose distance function between particle momenta
Here: independent of particle type t, do not consider internal structure

di(p, q) = \/(ﬁ— G)?+12(pL —q.)?  T:tunable parameter
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Cell resampling
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Cell resampling drastically reduces the number of required events ]
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Cell resampling

Analysis from

Z — ete, dressed level Z — (T~ dressed level
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Cell resampling preserves predictions
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Unweighting for Z + jet
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original: 8.21 x 108 events

unweighted: 320 events

resampled + unweighted: 11574 events

resampled + unweighted (small sample): 320 events
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Summary

* Negative event weights lead to slow statistical convergence

¢ Idea: remove negative weights by smearing over small phase space regions
» Potential to reduce the number of required events by orders of magnitude
» Preserves predictions of observables
» Agnostic with respect to process and observables

» Automatic improvement with increasing statistics
» Computationally efficient: ~ 55 CPU hours for one billion events (W + 5 jets)
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Summary

* Negative event weights lead to slow statistical convergence
¢ Idea: remove negative weights by smearing over small phase space regions
» Potential to reduce the number of required events by orders of magnitude
» Preserves predictions of observables
» Agnostic with respect to process and observables
» Automatic improvement with increasing statistics
» Computationally efficient: ~ 55 CPU hours for one billion events (W + 5 jets)

Ongoing work:
° AppI|Cat|0n tO parton Showered Samples \/ [Andersen, Cueto, Maier, Jones]
¢ |RC safety with electroweak corrections [Andersen, Maier, Schanher]

Systematic estimate of uncertainties
Integrate into existing workflows
Guide Monte Carlo event generation? [Andersen, Maier, Maitre, Schénherr]
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Distances in phase space

Need distance function d(e, e') between events e, €’

o d(e, €') small = e, ¢ look similar in detector or differ only in
properties the event generator can’t predict
e Desirable: d(e, €') large = e, €’ look different in detector
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Distances in phase space

Need distance function d(e, e') between events e, €’

o d(e, €') small = e, ¢ look similar in detector or differ only in
properties the event generator can’t predict
e Desirable: d(e, €') large = e, €’ look different in detector

Example: infrared safety
* d(e, €') unaffected by collinear splittings with © — 0
* d(e, €') unaffected by soft particles with p — 0
= define distance in terms of infrared-safe physics objects, e.g. jets

Here: Example for fixed-order (QCD) event generator
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Event samples

[BLACKHAT 2013 + 2017]

Sample Process Centre-of-mass energy # events

z1 pp — (Z — eTe™) +jet 13TeV 8.21 x 108
z2 pp— (Z —ete ) +2jets 13TeV 5.30 x 108
Z3 pp— (Z - ete ) +3jets 13TeV 1.65 x 10°
W5 pp— (W~ = e ve)+5jets 7TeV 1.17 x 10°
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Resampling for W + 5 jets

Transverse momentum of fourth jet

Rapidity of fourth jet

original
—— < 10GeV cells
—— < 100GeV cells

1/0 do/dp (jet4) [GeV~1]

1/0 do/dy(jet 4)

original
—— < 10GeV cells
—— < 100GeV cells
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Nearest-neighbour search
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