Soft QCD in MC Event Generators

(A selection of topics focusing on pp, with emphasis on Pythia)

1. Hadronization Uncertainties for Precision Studies
Multiple Parton Interactions & PDFs

Colour Reconnections & Heavy-Flavour Baryons
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1. Hadronization Uncertainties for Precision Studies



Hadronization

Map: Partons (defined at a low factorisation scale, after showering) - Hadrons

s+ » Fully Inclusive: Power Corrections (to IRC Safe Observables)

» Semi-Inclusive: Fragmentation Functions: One hadron species at a time

Inclusive sums

+» Fully Exclusive: Dynamical Models in MC Event Generators
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Map: Partons (defined at a low factorisation scale, after showering) - Hadrons

s+ » Fully Inclusive: Power Corrections (to IRC Safe Observables)

» Semi-Inclusive: Fragmentation Functions: One hadron species at a time

Inclusive sums

+» Fully Exclusive: Dynamical Models in MC Event Generators
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Important point: even for nominally IRC safe observables, peaks of distributions

often involve low scales where HAD sensitivity is highest = NP peak shifts.
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Uncertainties

High-Precision Measurements < Rigorous & Exhaustive Uncertainties

» Expensive to construct & perform all salient parm variations individually = GEAN

Not just question of CPU; also environmental impact, cost, inefficient duplication of man-hours & higher
risk of mistakes/inconsistencies (by non-authors) + risk that lessons learned aren't perpetuated

» Sophisticated: reweighting methods developed for Parton Showers

Based on reinterpreting the veto algorithm’s accept and reject probabilities
[VINCIA 1102.2126; SHERPA 1605.04692: HERWIG 1605.08256; PYTHIA 1605.08352]

(Note: reweighting of course also done for PDFs and in Fixed-Order Calculations.)
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Uncertainties

High-Precision Measurements < Rigorous & Exhaustive Uncertainties

» Expensive to construct & perform all salient parm variations individually = GEAN

Not just question of CPU; also environmental impact, cost, inefticient duplication of man-hours & higher
risk of mistakes/inconsistencies (by non-authors) + risk that lessons learned aren’t perpetuated

» Sophisticated: reweighting methods developed for Parton Showers

Based on reinterpreting the veto algorithm’s accept and reject probabilities
[VINCIA 1102.2126; SHERPA 1605.04692: HERWIG 1605.08256; PYTHIA 1605.08352]

(Note: reweighting of course also done for PDFs and in Fixed-Order Calculations.)

Hadronization Uncertainties: More parameters and lots of subtleties
Interplay between perturbative (eg Niets) and nonperturbative (eg Nyadrons) 0bservables

Parameter correlations; for a helping hand, see AutoTunes [Bellm & Gellersen, 1908.10811]

Risk of purely data-driven methods (eg eigentunes) to overfit precise data points at expense of
tails / asymptotics / less statistically dominant (but perhaps theoretically important) data

Tensions between different measurements

» Recent elaborate studies with PYTHIA 8, see eg: [Jueid et al., 1812.07424; 2202.11546; 2303.11363]
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Another aspect of the problem

Pythia, Herwig, Sherpa all tuned to ~ same data » risk central tunes being “too" similar?

No guarantee that they span the experimental uncertainties (similar issue as of old with PDFs)
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Another aspect of the problem

Pythia, Herwig, Sherpa all tuned to ~ same data » risk central tunes being “too" similar?

No guarantee that they span the experimental uncertainties (similar issue as of old with PDFs)

Borrowed slide from A Ghosh < Machine Learning of/tor Theory Models
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'EPJC:s10052.022.10012.w: Aishik Ghosh, Benjamin Nachman
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\ Personal Comment: | would kind of hope next year's generator would be closer to Nature, not further from it...
Instruction to ML: "Please shrink Pythia vs Herwig difference” Model will learn to fool you !

ML methods don't often generalise the way you would hope
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Example: The Strong Force Meets the Dark Sector

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and 2202.11546 (antiprotons, eg for AMS) + 2303.11363 (all)

QCD uncertainties on Dark-Matter Annihilation Spectra S~
DM

» Compare different generators? Problem: all tuned to ~ same data Jets

DM
» Instead, did parametric refittings of LEP data within PYTHIA's modelling

(z), bLund, 0, also useful for collider studies of hadronization uncertainties

+ universality tests: identitying and addressing tensions, overfitting & universality/consistency
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00 DELPHI (82/113) I ALEPH (285/38?) m «* spectra (AOS) 82/113 B C-parameter (A) 34/116
060 | MEm OPAL (82/184) B LEP+SLD combined (771/962) @m0 spectra (ADLO) 82/184 W =, (ADLOS) 71/180
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s Different experiments 04 Different observables
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0.28 0.30 0.32 0.34 0.36 0.38 0.9 0.3 04 0.5
StringPT:sigma StringPT:sigma
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Example: The Strong Force Meets the Dark Sector

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and 2202.11546 (antiprotons, eg for AMS) + 2303.11363 (all)

QCD uncertainties on Dark-Matter Annihilation Spectra S~
DM

» Compare different generators? Problem: all tuned to ~ same data Jets

DM
» Instead, did parametric refittings of LEP data within PYTHIA's modelling

(z), bLund, 0, also useful for collider studies of hadronization uncertainties

+ universality tests: identitying and addressing tensions, overfitting & universality/consistency
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s Different experiments 04 Different observables
0.46 T T ; T T T
0.28 0.30 0.32 0.34 0.36 0.38 02 03 04 05
StringPT:sigma StringPT:sigma
. . o . . . . Parameter without 5% with 5%
Simple sanity limit / overfit protection / tension resolution: StringPT:Sigma  0.3151 700010 305700008
add blanket 5% baseline TH uncertainty StringZ:alund 1.02810:031 (. 97610054
: . +0.0010 +-0.0026
(+ exclude superseded measurements) Strings:avgsiund U-5934 20,0010 0-9496 0,006
X2 /ndf 5169/963 778/963
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Example: The Strong Force Meets the Dark Sector

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and 2202.11546 (antiprotons, eg for AMS) + 2303.11363 (all)

QCD uncertainties on Dark-Matter Annihilation Spectra S~
DM

» Compare different generators? Problem: all tuned to ~ same data Jets

DM
» Instead, did parametric refittings of LEP data within PYTHIA's modelling

(z), bLund, 0, also useful for collider studies of hadronization uncertainties

+ universality tests: identitying and addressing tensions, overfitting & universality/consistency
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Different hard processes ...

s Different experiments 041 Different observables
0.46 Quarks vs Gluons ...
| 0.28 0.30 0.32 0.34 0.36 0.38 0o 03 o o
StringPT:sigma StringPT:sigma
. C . ) . . . Parameter without 5% with 5%
Simple sanity limit / overfit protection / tension resolution: StringPT:Sigma  0.3151 700010 305700008
add blanket 5% baseline TH uncertainty StringZ:alund 1.02810:031 (. 97610054
: . +0.0010 +0.0026
(+ exclude superseded measurements) StringZ:avgzlund 05532 o010 U-5290_0.0026
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Peter Skands Soft QCD in MC Event Generators 6



https://arxiv.org/abs/1812.07424
https://arxiv.org/abs/2202.11546
https://arxiv.org/abs/2303.11363

Example: The Strong Force Meets the Dark Sector

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and 2202.11546 (antiprotons, eg for AMS) + 2303.11363 (all)
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Example: The Strong Force Meets the Dark Sector
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Same done for antiprotons, positrons, antineutrinos Main Contact: adil jueid@gmail.com

» Tables with uncertainties available on request. Also the spanning tune parameters of course.
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Example: The Strong Force Meets the Dark Sector

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and 2202.11546 (antiprotons, eg for AMS) + 2303.11363 (all)
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Same done for antiprotons, positrons, antineutrinos Main Contact: adil jueid@gmail.com

» Tables with uncertainties available on request. Also the spanning tune parameters of course.
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New: Automated Hadronization Uncertainties

Problem:

» Given a colour-singlet system that (randomly) broke up into a specitic set ot hadrons:
el e L. 09 o9  One®.- . en®

» What is the relative probability that same system would have resulted, if the fragmentation
parameters had been somewhat different?

» Would this particular final state become more likely (w" > 1)7?
» Or less likely (W’ < 1)

» Crucially: maintaining unitarity = inclusive cross section remains unchanged!
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New: Automated Hadronization Uncertainties

Problem:

» Given a colour-singlet system that (randomly) broke up into a specitic set ot hadrons:
el e L. 09 o9  One®.- . en®

» What is the relative probability that same system would have resulted, if the fragmentation
parameters had been somewhat different?

» Would this particular final state become more likely (w" > 1)7?
» Or less likely (W’ < 1)

» Crucially: maintaining unitarity = inclusive cross section remains unchanged!

Aug 25: Bierlich, llten, Menzo, Mrenna, Szewc, Wilkinson, Youssef, Zupan
[Reweighting MC Predictions & Automated Fragmentation Variations in Pythia 8, 2308.13459'

Method is general; demonstrated on variations of the 7 main parameters governing longitudinal
and transverse fragmentation functions in PYTHIA 8

https://gitlab.com/uchep/mlhad-weights-validation
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Examples

Transverse FF

1 eXp( (Apx)2+(Apy)2>

2 2
27T0'p QJpT

For each pr (Box-Muller transform):

;. 0'2 0'2
w —ﬁexp — K 0_/2 1

k = (n? +n3)/2 and n; are normally distributed random variates
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Examples

Transverse FF

1 exp (pr)Q T (Apy)Q
27TO']%T QO'Z%T

For each pr (Box-Muller transform):
. 0° o? {
w = —exp| —k
g2 g'2

k = (n? +n3)/2 and n; are normally distributed random variates
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Examples

Transverse FF

: exp( (Aps)* + <Apy>2>
2m0;, 205 .

For each pr (Box-Muller transform):

/
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k = (n? +n3)/2 and n; are normally distributed random variates
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0.2

/2 — K

exp

2

O

O

/2

0, T
Charged Multlpllaty S p0_35o

S
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e L. L. | : P
10 20 30 40 50
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—7 — —
3 abase 0350 [ + 1F abase 0350 E
T g _m*“*"‘—'%@
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20 40 20 40

Longitudinal FF

2
f(z) ~ scaled light- ]- \ @ bmJ_
cone hadron (X ] - (1 — 2 )—€XDP
momentum fraction > TrQomy, Z

Accept-Reject Algorithm

w/ — W H Rz a,ccept(z)

i

Rfj,reject (2)7

1€accepted j1€rejected
W|th R ( ) B Péccept(z) . /- (Z) _ Pr/eject(z) 1 — P;ccept(z)
accept P, accept(z , reject P reject(z ) 1-P accept (Z )
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Examples

Transverse FF

1 exp (pr)Q T (Apy)Q
27TO']%T QO'Z%T

For each pr (Box-Muller transform):
2 2
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Longitudinal FF

2
f(z) ~ scaled light- ]- \ @ bmJ_
cone hadron (X ] - (1 — 2 )—€XDP
momentum fraction > TrQomy, Z

Accept-Reject Algorithm

w/ — W H Rz a,ccept(z)

i

] reject (Z)

1€accepted j1€rejected
/
Wlth R ( ) _ Péccept(z) i / (Z) Preject(z) 1 — accept (Z)
— : ot — —
accept P, accept(z HeIee P reject(z ) 1-P accept (Z )
S D :' N O L B B B
5 < O = T a
e i Nch - Charged Multiplicity 0.68
= 02 = - ~.Brute-Force Variations - 0.30
é’ B = 0.55
b .......... 0.76
— 0.1 _
Q -
('U L
0 !
O _
als 0.0 Tl T o SO R S T N R
10 20 30 40 50
charge multiplicity
§ a=0.30 a=0.55 a=0.76
‘U I I I I I I I I T
o | | 1 [ 1 [ ]
§ (L 2.5 - qbase = O 68 1t qbase = O 68 1t qbase = O 68 ]
SO =00 Yo ) PRI NS i ) PR S R ) PRSI R
= |3 25 50 25 50 25 50
an

(+ can vary 5 further parameters, in addition to a)
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7. Multiple Parton Interactions & PDFs



2) Multiple Parton Interactions — and PDFs

QCD dijet cross section (cumulative)
Lesson from bremsstrahlung in pQCD:

SEEPYE Bahr, Butterworth, Seymour: arXiv:0806.2949 [hep-ph . .
2 U F | | . Divergences — fixed-order breaks down
= N —— MRST2007 LO* N
o i CTEQ6L i Perturbation theory still ok, with resummation (unitarity)
i —— MRST2001 int. _
- ?_o _ Leading-Order pQCD - Unitarity: Divergent cross section for one emission reinterpreted
3] < . . . . . .
S| 8 dom:: as finite cross section for a divergent number of emissions
10’ 5|5 A2 Dijet _
- Z|E Pl d 2 -
: 7 S pi,min pJ— -
. §ls _
; (;5_ - _
- DL koft + hard N
10* DL =
|| I I | I I | | I I | I I | | I I I I I | | | 1|

2 3 4 5 6 7
p |GeV]

T.min
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2) Multiple Parton Interactions — and PDFs

QCD dijet cross section (cumulative)
Lesson from bremsstrahlung in pQCD:

SEEPYE Bahr, Butterworth, Seymour: arXiv:0806.2949 [hep-ph . .
2 U F | | . Divergences — fixed-order breaks down
= N —— MRST2007 LO* N
o i CTEQ6L i Perturbation theory still ok, with resummation (unitarity)
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- ?_o _ Leading-Order pQCD - Unitarity: Divergent cross section for one emission reinterpreted
3] < . . . . . .
S| 8 dom:: as finite cross section for a divergent number of emissions
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TR o , L T2 E
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. §ls _
; ;5_ - _
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10’ DLf - ===~ ===\~~----- =
|| I I | I I | | L1 | I I | | | 1|
2 3 6 7
p. . [GeV]

T.min

0-2—>2(pJ_min) — <TL> (pJ_min) O tot

Parton-Parton Hadron-Hadron
Cross Section Cross Section
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QCD dijet cross section (cumulative)
Lesson from bremsstrahlung in pQCD:

— 10* Bahr, Butterworth, Seymour: arXiv:0806.2949 [hep-ph . .
-2 -  \IRST2007T O . Divergences — fixed-order breaks down
o [ CTEQ6L i Perturbation theory still ok, with resummation (unitarity)
) —— MRST2001 int. .
A Leading-Order pQCD - Unitarity: Divergent cross section for one emission reinterpreted
S| 5 dODijet as finite cross section for a divergent number of emissions
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- 53 PL min + - — Resum dijets? Yes = MPI!
I AS _
: ;5_ - _
I ] Interpret to mean that every pp collision has more
soit + harc
i pi than one 2 — 2 QCD scattering with p; < 4 GeV
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MPI probe low prscales down to Q ~ 1 GeV

0-2—>2(pJ_min) — <TL> (pJ_min) O tot

Parton-Parton Hadron-Hadron
Cross Section Cross Section

And very low x scales, down to x ~ 1/sy;,
Earliest MC model (“old” PYTHIA 6 model) Sjostrand, van Zijl PRD36 (1987) 2019
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Lesson from bremsstrahlung in pQCD:

— 10* Bahr, Butterworth, Seymour: arXiv:0806.2949 [hep-ph . .
— - . . . . Divergences — fixed-order breaks down
= N Driven by —— MRST2007 LO* _
o i low;x gluon CTEQS6L i Perturbation theory still ok, with resummation (unitarity)
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-5 Leading-Order pQCD - Unitarity: Divergent cross section for one emission reinterpreted
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S| 8 dom:: as finite cross section for a divergent number of emissions
3l 5[5 d 2 Dijet .
- 53 PL min + - — Resum dijets? Yes = MPI!
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I ] Interpret to mean that every pp collision has more
soft + har
i pi than one 2 — 2 QCD scattering with p; < 4 GeV
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MPI probe low prscales down to Q ~ 1 GeV

0-2—>2(pJ_min) — <TL> (pJ_min) O tot

Parton-Parton Hadron-Hadron
Cross Section Cross Section

And very low x scales, down to x ~ 1/sy;,
Earliest MC model (“old” PYTHIA 6 model) Sjostrand, van Zijl PRD36 (1987) 2019
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The issue with NLO gluons at low x

(Summary of note originally written by T. Sjostrand, from discussions with R. Thorne though any oversimplitications or misrepresentations are our own)

Low-x gluon
Key constraint: DIS F,

Low x: dF,/d ln(Qz) driven by g — qg

LO Pg/4(2) ~ tlat = x of measured

quark closely correlated with x of
mother gluon.

NLO P./4(z)  1/z for small z =
Integral over z produces an

approximate In(1/x) factor.

» Effectively, the NLO gluon is
probed more “non-locally” in x.

dIn F,/dQ? at small x becomes too
big unless positive contribution from
medium-to-high-x gluons (derived
from d1n F,/dQ? in that region, and
from other measurements) is
combined with a negative
contribution from low-x gluons.

Not so important for high-pt processes because 1) DGLAP evolution fills up low-x region, 2) kinematics restricted to higher x, 3) smaller a,
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Mathematically (toy NLO Calculation with just one X):
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Key constraint: DIS F, ME; o =1+ as(Ar1In(1/2) + Ao)

7

LO Py (2) ~ flat = x of measurec In(1/x) largely compensated in def of NLO PDF:

quark closely correlated with x of PDFxNLo
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Low x: dF,/d ln(Qz) driven by g — qg
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Integral over z produces an
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The issue with NLO gluons at low x

(Summary of note originally written by T. Sjostrand, from discussions with R. Thorne though any oversimplitications or misrepresentations are our own)

Mathematically (toy NLO Calculation with just one X):
Low-x gluon N
Key constraint: DIS F, ME; o =1+ as(Ar1In(1/2) + Ao)

7
In(1/x) largely compensated in def of NLO PDF:

Low x: dF,/d In(Q?) driven by g = ¢g
LO Pg/4(2) ~ tlat = x of measured

quark closely correlated with x of PDFnro = 1+ (B In(1/2) + By)

mother gluon. PDFyo

NLO P./4(z)  1/z for small z = » Product well-behaved at NLO it we choose B; ~ A, s
Int | d ()
wegra; Over s produ-es an Cross term at O(a?) is beyond NLO accuracy ... gy e

approximate In(1/x) factor.

» Effectively, the NLO gluon is ’ N |
probed more “non-locally” in x. For ‘a_rge x and smal aS(Q ), €.9. asAl In(1/x) ~ 0.2:

MEnro PDFxNLo
dIn F,/dQ~ at small x becomes too ME; o PDF; o (1+0.2)(1-0.2) =0.96 b log terms cancel
big unless positive contribution from |
medium-to-high-x gluons (derived | ,
from d1n F,/dQ? in that region, and But if x and (- are small, say OCSAl In(1/x) ~ 2:
from other measurements) is MEnLo PDFxro ¥ Cross term dominates:

combined with a negative = (1+2)(1-2)=-3

contribution from low-x gluons. MELo PDFLo

The PDF becomes negative

Not so important for high-pt processes because 1) DGLAP evolution fills up low-x region, 2) kinematics restricted to higher x, 3) smaller a,
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Some Desirable Properties for PDFs for Event Generators

General-Purpose MC Generators are used to address very diverse physics phenomena
and connect (very) high and (very) low scales » Big dynamical range!
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Main point: MP| can probe a large range of x, beyond the usual ~ 10~
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and connect (very) high and (very) low scales » Big dynamical range!

1. Stable (& positive) evolution to rather low 0° scales, e.g. Oy S 1GeV
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2. Extrapolates sensibly to very low x ~ 107° (at LHC), especially at low Q ~ Q.

"Sensible” ~ positive and smooth, without (spurious) structure
Constraint for perturbative MPI: § > (1 GeV)* = Xy = 107°  (Xpee > 10719

Main point: MP| can probe a large range of x, beyond the usual ~ 10~

(Extreme limits are mainly relevant for ultra-forward / beam-remnant fragmentation)

3. Photons included as partons

Bread and butter for part of the user community
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4. LO or equivalent in some form (possibly with a;", relaxed momentum sum rule, ...)
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Some Desirable Properties for PDFs for Event Generators

General-Purpose MC Generators are used to address very diverse physics phenomena
and connect (very) high and (very) low scales » Big dynamical range!

1. Stable (& positive) evolution to rather low 0° scales, e.g. Oy S 1GeV
ISR shower evolution and MPI go all the way down to the MC IR cutofts ~ 1 GeV

2. Extrapolates sensibly to very low x ~ 107° (at LHC), especially at low Q ~ Q.

"Sensible” ~ positive and smooth, without (spurious) structure
Constraint for perturbative MPI: § > (1 GeV)* = Xy = 107°  (Xpee > 10719

Main point: MP| can probe a large range of x, beyond the usual ~ 10~

(Extreme limits are mainly relevant for ultra-forward / beam-remnant fragmentation)

3. Photons included as partons

Bread and butter for part of the user community

4. LO or equivalent in some form (possibly with a¢!!, relaxed momentum sum rule, ...)

Since MP| Matrix Elements are LO:; ISR shower kernels also LO (so far)

5. Happy to have N"LO ones in a similar family.
E.g., for use with higher-order MEs for the hard process.
Usetful (but possible?) for these to satisty the other properties too?
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3) Colour (Re)connections
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3) Colour (Re)connections

Hadronization

» Map: Partons (defined at a low factorisation scale, after showering) — Hadrons

» Between which partons do the confining potentials form?
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3) Colour (Re)connections

Hadronization

» Map: Partons (defined at a low factorisation scale, after showering) — Hadrons

» Between which partons do the confining potentials form?

Starting point for MC generators = Leading Colour limit N — oo

— Probability for any given colour charge to accidentally be same as any other — 0.

—> Each colour appears only once & is matched by a unique anticolour.

Example (from new Pythia 8.3 manual):

ete” = 70 - gg + parton shower

102
g O U
101
50"
00 73 04
103

Colour flow represented using
"Les Houches colour tags”
Eg., 101,102, ... [hep-ph/0109068 , hep-ph/060901/]
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3) Colour (Re)connections

Hadronization

» Map: Partons (defined at a low factorisation scale, after showering) — Hadrons

» Between which partons do the confining potentials form?

Starting point for MC generators = Leading Colour limit N — oo

— Probability for any given colour charge to accidentally be same as any other — 0.

—> Each colour appears only once & is matched by a unique anticolour.

Example (from new Pythia 8.3 manual):

In ¢e"e~ collisions (LEP):

ete” = 70 - gg + parton shower

» Corrections to the Leading-Colour - 12
picture suppressed by 1/Nz ~ 10 %
101
» Also: coherence = not much overlap e
in phase space (except in WW — 4q) R N
103

Colour flow represented using
"Les Houches colour tags”
Eg., 101,102, ... [hep-ph/0109068 , hep-ph/060901/]
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Colour Connections: Between which partons do confining potentials form?

High-energy pp collisions with QCD bremsstrahlung + multi-parton interactions
» Final states with very many coloured partons

» With significant overlaps in phase space Example (from new Pythia 8.3 manual):

pp — tt (all-jets)

» Who gets confined with whom?

» |t each has a colour ambiguity ~ 10%,
CR becomes more likely than not

VP

|
Prob(no CR) x| 1 ——
Ne¢

MPI
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Colour Connections: Between which partons do confining potentials form?

High-energy pp collisions with QCD bremsstrahlung + multi-parton interactions
» Final states with very many coloured partons

» With significant overlaps in phase space Example (from new Pythia 8.3 manual):

pp — tt (all-jets)

» Who gets confined with whom?

» |t each has a colour ambiguity ~ 10%,
CR becomes more likely than not

VP

|
Prob(no CR) x| 1 ——
Ne¢

Note: in this context, the word “colour
reconnections” simply refers to an ambiguity MPI
peyond Leading N¢, which is known to exist.

But the term “"CR" can also be used more
broadly to incorporate further physics concepts. 5

Detailed physics not yet fully known.
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Colour Connections: Between which partons do confining potentials form?

-
High-energy pp collisions with QCD bremsschIung:t. mul’g'.-partoninteractions

. . ® O
> Final states with very many coloured partohs_ e % o/ o O
© ®\o O O @9 ° °
- C.

E’><an$|e (from @e Pyﬂ\’ia .3‘manua|):
e ‘?]’—;ﬁ (@ll-jets) ‘..

» With signiticant overlaps in phase space

» Who gets confined with whom?

» |t each has a colour ambiguity ~ 10%
CR becomes more likely than not e

VP

|
Prob(noCR) x| 1 ——

Note: in this context, the word “colour _ o
reconnections” simply refers to an ambigufy ¢

peyond Leading N¢, which is known to exist. °
But the term “CR” can also be used more ~ ®e
broadly to incorporate further physics concepts. R
Detailed physics not yet fully known. ®s o, o
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How many MPI are we talking about?

How many parton-parton systems are there in pp collisions? DPS? 3PS?

Multi-Parton Interactions (MPI)

remnant /\ remnant’
Y | |
remnant N/ remnant’

—> can have very many parton systems
within a single pp collision (esp. in high-

multiplicity events)

Ratio

All within ~ transverse size of a proton

(= right on top of each other)

Peter Skands

Soft QCD in MC Event Generators

(Inelastic pp collisions at 7 TeV)

number of interactions

—e— Monash + CR
| ---4--- Monash

N
~ | I
N
N
N
AN

’\_\

| Ca

High-multiplicity events

_*:

I

I

I

I

I

I

I

I

I

'
events |

I

] ] ] ] !
I
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I
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Unique feature of SU(3): Y-Shaped 3-String “Junctions” » Baryons

Baryon Number Violation & String Topologies: Sjéstrand & PS hep-ph/0212264

“Colour reconnection” modelling based on stochastic sampling of SU(3) group
probabilities: allows for random (re)connections String Formation Beyond Leading Colour: Christiansen & PS 1505.01681

For example: Extra baryon-antibaryon production

@ @ Q@ N\ @
2 0O @

O @ @ @
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Unique feature of SU(3): Y-Shaped 3-String “Junctions” » Baryons

Baryon Number Violation & String Topologies: Sjéstrand & PS hep-ph/0212264

“Colour reconnection” modelling based on stochastic sampling of SU(3) group
probabilities: allows for random (re)connections String Formation Beyond Leading Colour: Christiansen & PS 1505.01681

For example: Extra baryon-antibaryon production

@ @ Q / N\ @
2 0O @
@ @ @ @

A /K versus rapidity at /s =7 TeV [NeNTENT K- AN

@ 0.7 —
= - CMS DATA (2011, NSD)
Z 0.6 — |
— ;.=I.—..—.—. =~ Fo T A p e e |—------ -
) 0.5 — ’ % ! %
Z B
0.4 ;_ Without string-junction CR ]
0.3 :_ AO —e— Data /
- - —— Monash
- Mode o
~ QCD-based CR
0.1 :— lg () - == Mode 2 with junctions
- S === Mode 3
- R | T |
0 0.5 1 1.5 2

Mode O, 2, 3 are different causality restrictions (0 = none) ]
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Unique feature of SU(3): Y-Shaped 3-String “Junctions” » Baryons

Baryon Number Violation & String Topologies: Sjéstrand & PS hep-ph/0212264

“Colour reconnection” modelling based on stochastic sampling of SU(3) group
probabilities: allows for random (re)connections String Formation Beyond Leading Colour: Christiansen & PS 1505.01681

For example: Extra baryon-antibaryon production

@ @ Q@ N\ @ ALICE 2021: also in charm
@—@ » 0 &<
@ @ DG

arxiv:2011.06079 arXiv:2106.082/8

@ D 0_8 B | | | | | | | | | | | | | | | | | | | | | | | | | | |
~ [ ALICE o pp,Vs=5TeV - ~

< 07F <05 e pp, Vs=13TeV -
A/K versus rapidity at /s = 7 TeV HEY _ _
—— 0.6 - PYTHIA 8.243, Monash 2013 —
A - A 1 PYTHIA 8.243, CR-BLC: .
g/) : CMS DATA (2011, NSD) - e Mode O ° -:-3,-0 I\/IOdSZ N
Z 0.6 _— 0.5 B ’ ]
~ - | K T - Mode 3 ' |
5 % e " ad 2k = H:-t:r.-..ﬁ. T W e - = B ) (IS Bt 7]
< osf T == & 04l SHM+RQM -
Z 3 T Catﬁﬂnia -
0.4 ;_Without string-junction CR ] :_ = \\.:ﬂ‘g QC _:
>3 b AO —e— Data / - \\;i - -
0 —— Monash e s TN | -
2 Mod icte B "ir:}:_,. : i n
- O o Mg dg (2) QCD-based CR 1 Pythia Default I A
0.1 — K with junctions : ___________________ (I\/Ionash) ~lEP T riIgnT 7
- 5 wroer Modes - | | | | |-
- | | ‘ | | | | | | ‘ | | 1 N N N N L

i 05 ; s ) 0 5 10 15 20 25
. . - ~ m . p. (GeV/c)

Mode 0, 2, 3 are different causality restrictions (O = none) (& LHCb: Also in beaty) T
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4. Strangeness, Ropes, and (Advanced) Close-Packing



4) Strangeness, Ropes, and Close-Packing

Clear observations of strangeness enhancements in high-multiplicity pp collisions
(relative to LEP and low-multiplicity pp) [e.g., ALICE Nature Phys. 13, 535 (2017)]

» Much activity to understand dynamics of eftective breakdown of strangeness universality

In string context, MPI + Colour Ropes [e.g., Bierlich et al. 1412.6259] have been proposed:

» Casimir scaling of effective string tension = less strangeness suppression in string breaks

To—— I ——— ' ——— )&
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Clear observations of strangeness enhancements in high-multiplicity pp collisions
(relative to LEP and low-multiplicity pp) [e.g., ALICE Nature Phys. 13, 535 (2017)]

» Much activity to understand dynamics of eftective breakdown of strangeness universality

In string context, MPI + Colour Ropes [e.g., Bierlich et al. 1412.6259] have been proposed:

» Casimir scaling of effective string tension = less strangeness suppression in string breaks

g P— s 6§

T Cy=C,=225C, Zf) C,=25C; Zf C,s =4Cy

Simplified alternative: Close-Packing [Fischer, Sjsstrand 1610.09818] string tension scales
with effective background o nup (global) or Nstings (local)

> Local version updated with Monash student J. Altmann to account for directional colour
flows (p and g), junction topologies, and eftective diquark suppression in octet-type

telds (“Alimann mechanism?): o s F 6 & iR

"Popcorn picture” in which diquark formation is GG (or GG fluctuation
viewed as a fluctuation of first one colour RR Or RR fluctuation
followed by another of a different colour increases tension from Cg to C,  Can just break the other string
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https://arxiv.org/abs/1610.09818

New: Strange Junctions

What do we really know about the field strength near a QCD junction?

> Probably related to baryon spectroscopy / lattice, but unaware of any specitic answers

Versus
String break <

"~ String break

Effective energy density per unit length could be difterent from vacuum case near a junction?
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New: Strange Junctions

What do we really know about the field strength near a QCD junction?

> Probably related to baryon spectroscopy / lattice, but unaware of any specitic answers

Versus
String break <

"~ String break

Effective energy density per unit length could be difterent from vacuum case near a junction?

Enhanced string tension on the string breaks closest to junction?
— Model of “strange junctions” (with Monash PhD student Javira Altmann)
Mechanism for strangeness enhancement specifically for junction baryons
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QCD CR + Advanced Close-Packing: First Results

III'IIT'III"IIT]IITXII'II'II'II:'IIT

2K/(at + 1) | ——— Monash (no QCD CR, no close-packing) ~ LEP

W 44 + —— QOCD CR (mode 2); no close-packing
- .. — QCDCR+ ACP: p/x tune

- Monash —

= el QCD CR + ACP:

A /K tune

|
(A + AN/ (xt + 1) _ plm |
StringPT:tension = 0.05 0.11 < Close-packing
+ | Al .+. Tl_ —+; StringPT:qqFac = 0.7 0.23 <« Altmann Mechanism
+ + | = StringFlav:strangeJuncFactor =  0.65 0.55 <« Junction Strangenesss

/ —e— ALICE -

Monash
——— CR (Mode 2)
p /7 tune

A /K tune

L1y e e by

1.!|1.!|1:!|.J.t!||.14!‘|:.1!

(P +P 4 0)

LEP |’

. A

—e— ALICE

i NOte I_HC p/ﬂ: |S Monash =
——— CR (Mode 2)
_ smaller than at LEP plxme

Il II| III!II‘III‘III‘ IIIIIIIIIIII
4 6 8 10 12 14 16 18 20
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2K/(at + 1) | ——— Monash (no QCD CR, no close-packing) ~ LEP

W 44 + —— QOCD CR (mode 2); no close-packing
- .. — QCDCR+ ACP: p/x tune

- Monash —

= el QCD CR + ACP:

A /K tune

— —

III=|III;IIIi

10 2

|
(A + AN/ (xt + 1) _ plm |
StringPT:tension = 0.05 0.11 < Close-packing
5 + h -] _+. Jr— —+; StringPT:qqFac = 0.7 0.23 <« Altmann Mechanism
u/, o StringFlav:strangedJuncFactor =  0.65 0.55 <« Junction Strangenesss
{7 —e— ALICE u
Monash
_Ci{(thfl;dez) = | Dlata. | | | | | I _I | T T 1 | E 2iE Gl | 1T 1 | 1 | =
p /x tune ® —
A /K tune 0 Monash (Q + Q)/(ﬂ'_l_ + T ) -
1.4|u4|ls!|u4P44!,w4.4! A A A | ——— CR (Mode 2) = .
| | — p/xtune ]
(p+p)(xT+77) A/K tune ' QCDCR +ACP

e e _
IS S e o o e L

- Note: LHC p/7 is " oma

Monash = —
——— CR (Mode 2) - Monash
. smaller than at LEP pltune L
IIII|II|!II‘IIIl!II‘III A/Ktune llllllllllll :

o e bee v b by
4 6 8 10 12 14 16 18 20

|
4 6 8 0 12 4 16
(%) In|=0 (' ] =0
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QCD CR + Advanced Close-Packing: First Results

III'III'III"IIT

] 1
2K/t + 1)

?{Il'll'

T T [T T T T 71T

|
101 g |
B —eo— ALICE
Monash -
——— CR (Mode 2)
p/m tune
A /K tune

—

||I|Ilt

Il’ll

—e— ALICE n
Monash
——— CR (Mode 2)

p /7 tune

A /K tune

!!I.‘!!

L L

(P +P 4 0)

1.4|1.!|1;!I414!444,-11 I

F—

LEP |,

. R
- Note: LHC p/7 is

_ smaller than at LEP
i lssnlanalesslonsilsssl

—e— ALICE

Monash =
——— CR (Mode 2)

p/n tune

A /K tune

4 6 8 10 12 14

Peter Skands

16 18 20

T

Monash (no QCD CR, no close-packing) ~ LEP
QCD CR (mode 2); no close-packing

QCD CR + ACP: p/7x tune
QCD CR + ACP:

plr
StringPT:tension = 0.05 0.11 < Close-packing
StringPT:qqFac = 9.7 0.23 <« Altmann Mechanism
StringFlav:strangeJuncFactor = 0.65 0.55 <« Junction Strangenesss
—_T._|])lata | | | | I | _I | T 1T 1 | | I | | I | 1 | =
L Monash (Q + Q)/(ﬂ'+ + 72«-_) = . . .
e L . == Being finalised
A/K tun QCDCR + ACP '
une CDCR + ACP now, With
i oublication on
the way.
- J. Altmann, PS
o "~ Monash -
Lo b b e b e b b b | |
4 6 8 10 12 14 16
(dn ly1=0
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5. If there is time ...



Cosmic-Ray Air Showers

Single incident particle = billions of final-state particles (forget about GEANT).
Recently started a collaboration with CORSIKA 8 fast/optimised air-shower tracker
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Cosmic-Ray Air Showers

Single incident particle = billions of final-state particles (forget about GEANT).
Recently started a collaboration with CORSIKA 8 fast/optimised air-shower tracker

New: PythiaCR  [Based on Sjéstrand + Utheim, 2005.05658 & 2108.03481]

» Provide hadron-air cross sections @ perform collisions @ simulate hadron decays

(Air ~ 14N + 16Q; currently also 49Ar, 208Pb: tew hours of manual labour to add more)
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» Cosmic-ray "beams” are heterogenous and not mono-energetic:

Achieved by initialising multiple beams in energy grids + rapid beam switching
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Cosmic-Ray Air Showers

Single incident particle = billions of final-state particles (forget about GEANT).
Recently started a collaboration with CORSIKA 8 fast/optimised air-shower tracker

New: PythiaCR  [Based on Sjéstrand + Utheim, 2005.05658 & 2108.03481]

» Provide hadron-air cross sections @ perform collisions @ simulate hadron decays
(Air ~ 14N + 160; currently also 49Ar, 208Pb; few hours of manual labour to add more)

» Cosmic-ray "beams” are heterogenous and not mono-energetic:

Achieved by initialising multiple beams in energy grids + rapid beam switching

» CR (re-)interactions “fixed-target”; can probe low CM energies (by HEP standards)
Standard (collider) Pythia only applies for \/E > 10GeV

New extensive low-energy (re)interaction models

= Arbitrary hadron-hadron collisions at low E, and arbitrary hadron-p/n at any energy)
Extend to hadron-nucleus using nuclear-geometry part of ANGANTYR
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= Arbitrary hadron-hadron collisions at low E, and arbitrary hadron-p/n at any energy)
Extend to hadron-nucleus using nuclear-geometry part of ANGANTYR

So far limited comparisons with data - interested in feedback
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Cosmic-Ray Air Showers

Single incident particle = billions of final-state particles (forget about GEANT).
Recently started a collaboration with CORSIKA 8 fast/optimised air-shower tracker

New: PythiaCR  [Based on Sjéstrand + Utheim, 2005.05658 & 2108.03481]

» Provide hadron-air cross sections @ perform collisions @ simulate hadron decays
(Air ~ 14N + 160; currently also 49Ar, 208Pb; few hours of manual labour to add more)

» Cosmic-ray "beams” are heterogenous and not mono-energetic:

Achieved by initialising multiple beams in energy grids + rapid beam switching

» CR (re-)interactions “fixed-target”; can probe low CM energies (by HEP standards)
Standard (collider) Pythia only applies for \/E > 10GeV

New extensive low-energy (re)interaction models

= Arbitrary hadron-hadron collisions at low E, and arbitrary hadron-p/n at any energy)
Extend to hadron-nucleus using nuclear-geometry part of ANGANTYR

So far limited comparisons with data - interested in feedback

> A positive technical note: native C++ simplities CORSIKA 8 - PYTHIA 8 intertacing

See also M. Reininghaus et al. Pythia 8 as hadronic interaction model in air shower simulations, 2303.02792
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Last: mcplots.cern.ch — New and Updated coming soon!

mcplots.cern.ch started in 2010, as browsable repository of MC validations (via Rivet)

Peter Skands

» Running continuously on ~ 1000 cores donated by BOINC LHC@home volunteers (+ Grid backfill)

MCPLOTS

Soft QCD (inelastic) : <pT> vs Nch

— Home

— Plots Repository

— Generator Validation
— Tuning Validation

— About

— Update History

— LHC@home / Test4Theory @
— Reference Article &

Analysis filter:

— Generator Versions
—Beam: [odf¢JeleE=1d ee
—Analysis:

tt
— Jet Shapes

Z (Drell-Yan)

— Jet Multiplicities
— 1/odo(Z)/de’,
— do(Z2)/dpTZ

— 1/odo(Z)/dpTZ

i

Rato v ATLAS

— Charge asymmetry vs n
— Charge asymmetry vs Njg
— do(jet)/dpT

— Jet Multiplicities

+
)

Generator Group:
Subgroup:

pp @ 7000 GeV

ATLAS Nch =1 pT > 2.5

7000 GeV pp Soft QCD

14 1 ] T 13 ]' vvvvvvvvv ] ~ T ~ -

. Average p_Vvs Nd‘m:' >1,p, >2.5GeV) .

12/~ = ATLAS 2
[~ Herwig 7 2.0 default h
[ a— Pythia 8.301 default :

10 b= ¢ Sherpa228 default

8 —

» M .

N i 1 1 1 3 1 ......... l ..... ]
z } + + + + + + + 4 $ 4 4 .

2 = 42
- . ]
e A e 4 .

05 05
. 1 a . a . 1 a
0 10 20
N,
details

Rato © ATLAS

7000 GeV pp

ATLAS Nch =21 pT > 0.5

Average P Vs N, (N >1, p, >0.5GeV)

ATLAS -
Hereng 7 2.0 default
Pythia 8.301 default
¢ Sherpa228 default

2 E 2
. TP - R,
| gy ]
05 |- dos
0 -5 100
N,
details

Soft QCD in MC Event Generators

eI IRl golo LRV (@) Soft-Inclusive MCs Matched/Merged MCs Herwig Pythia 8 Pythia 6 Sherpa Custom
\"ETe) Herwig vs Pythia Pythia 6 vs 8 All C++ Generators

The intertace was
technically
advanced but
visually perhaps a
bit dated, and
somewhat
cluttered

“Old School”
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http://mcplots.cern.ch
http://mcplots.cern.ch

mcplots.cern.ch — New and Updated coming soon!

Modern clean interface developed through 2023 (+ many improvements under the hood)

» Mainly driven by Natalia Korneeva, now an adjoint at Monash U (with support from LPCC)

MAIN PLOTS ~ COMPARISON ~ CONTACT

Being finalised
now, With
oublication on

MCPLOTS

First online repository of Monte Carlo plots compared to experimental data

More than 100

Rivet analyses Join Test4Theory on

LHC@home

(simple to add

new ones) 110 114 782116 (Runs when computer is idle)

data analyses generators plots

Tools to compare ditferent
generators / tunes, or different
versions of same generator
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Extra Slides



An Achilles’ Heel? Protons!

So far, physics models have focused heavily on strangeness
> The original ALICE paper from 2017 also included the proton/pion ratio

> In many model setups, enhancement of strangeness is accompanied by more
neavier states in general = non-strange baryons also enhanced

» Also, QCD CR model acts in colour space; junction structures are flavour-blind

Baryon-to-Meson Ratios

Peter Skands Soft QCD in MC Event Generators 28




An Achilles’ Heel? Protons!

So far, physics models have focused heavily on strangeness
> The original ALICE paper from 2017 also included the proton/pion ratio

> In many model setups, enhancement of strangeness is accompanied by more
neavier states in general = non-strange baryons also enhanced

» Also, QCD CR model acts in colour space; junction structures are flavour-blind

Baryon-to-Meson Ratios

@) 045 B | | I B B I | —
.-IC:U E ALICE —— PYTHIAS8 (I\/Ionash)E
“ 04-—@® pp,\s=7TeV e DIPSY -
CC) - <> p-Pb, m =5.02TeV EPOS LHC -
é 0.35 E__ LEP _E
TR L LLE R R TR AV
c 0.251 _____ ji) Jaiel ) :
""" AKS -
= - s -
S 0208 . -
S T ———— :
0.15 Euemremereemee™ E
—tEpPE———————— ]
0.1kg BB ETE 7 p/]l'
- | pl (x2) -
0.05 '
<dNCh/d 77>I17I< 0.5
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An Achilles’ Heel? Protons!

So far, physics models have focused heavily on strangeness
> The original ALICE paper from 2017 also included the proton/pion ratio

> In many model setups, enhancement of strangeness is accompanied by more
neavier states in general = non-strange baryons also enhanced

» Also, QCD CR model acts in colour space; junction structures are flavour-blind

Baryon-to-Meson Ratios

0.45 I I I I Fr | I I I

2 ek  PVTHIAS (Momseh Data shows that the p/x ratio at LHC is a bit
C 04 @ ppis=7TeV e DIPSY - smaller than at LEP!
S = () p-Pb, |5 =5.02TeV EPOS LHC -
3 0'35;_— LEP E With ~ no evolution with N,
g 0.3;— j i i i@i i ﬁ i@ %% <H§A/K Protons are the most abundant baryons!
S 0'251 ------- i) ---------------------- o AIKO EPOS captures this behaviour
= N N
= 0'21 ““““““““ . E (what about @ LEP?)

015 nuTRUTTT TR EELLEL L e |

P : ) From a CR perspective, baryon
OAps 7 i 2) - pir enhancement appears very correlated with
0.05——+ 1. '1'0 | R strangeness ...
<dNCh/CI 77>I17I< 0.5
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