
 

Quantum Field Theory Lecture 3

Our aim now is to find real Colt d solutions

to the Klein Gordon equation
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A standard way to find the solutions in such

situationsis to use Fourier space Define
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Now go to the Klein Gordon equation and compute
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We can satisfy this equation if
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i e if flt I solves the differential equation
for simple harmonic motion with frequency we Such

solutions take the form
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The naive solution is
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where we chose the negative sign in etiwet and
wrote e

it
e wet tie I However now our naive

solution is not real but that is easy to fix
since for any complex number Z Z It is real
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In order to guarantee Lorentz invariance of the

integration measure we normalise as follows
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This is our solution to the Klein Gordon equation
and now we want to quantise it
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In the canonical approach to quantisation we proceed

as follows
i promote p x It to operators p I II
ii impose commutation relations A 1
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iii in the Schrodinger picture the state
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There is a different approach that is more

usefulas it generalises to QFT namely the ladder

operator approach Here we write the Hamiltonian
in the form
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Since X X p 53 0 and I p i we

can show that
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Now if we have an eigenstate n of the

Hamiltonianthen
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and thus we may denote
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where Ints is an eigenstate of it with energy
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For any energy eigenstate In it raises its

energy by one unit of w and na lowers it by one

unit of w The ground state is the state 10
such that
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and then
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It turns out that all states can be built from
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Now we write Hi w data tf and these

a's satisfy
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We denote states by
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where each of the N SHos is in a state Inis

independently of the others product state The

operator It acts as follows
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The vacuum state is that of all stos in their
vacuum state
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Excited states are given by
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This is called the occupation number representatio

TTIIons to Klein Gordon equation are linear

superpositions of an infinite number of Stds for

each mode É
We solved the SHO with raising lowering or

creation annihilation operators



RecapofDay1
Talked about what QFT is and why we use it

Fundamental degrees of freedom fields
We can write Lagrangian and Hamiltonians

densities with fields
Free massive scalar field L topdoro Imy
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Klein Gordon equation
Solutions in Fourier space each Fourier mode
É component satisfies the simple harmonic

motion equation with WI Itm
Quantised SHOs using raising lowering operators
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Then K G eq is satisfied
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which is the normalisation we used above


