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» CKM matrix plays a crucial role as fundamental parameters of the standard model:

d’ I Vud Vus Vub ] d
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» The unitarity test of the CKM matrix serves as one of the most important precision tests in particle physics.
» The first row of the CKM matrix provides the most accurate result:

Vial? + [Vus|? + |[Vas|* = 0.9985(6)v.., (4)v.., ([Vas|? ~ 1.7 x 107° < 1).
» V,q could be derived from nuclear and neutron beta decay.

> V,s could be derived from K|, and Kj; decays.

Jrce [Vis| _ 0.27600(37), from K.
f7‘(‘+ |VUd|

from Latice  [f(0)) | Vs | = 0.21635(38)(3), from Kjs.
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Experimental Input for V4

|Vud|
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Experimental Input for V4
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Experimental Input for V4

» Three ways to extract’ Vid ‘:

» Super-allowed beta decay: __ 3090}
most accurate % 3080}
™

limited by nuclear structure(NS)

0.97154(22) exp (54)Ns
(14 AY) ’
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‘Vud’2 —

» Ultra-Cold Neutron:
universal RC with super-allowed

not limited by NS, but limited by g,

» PIBETA & PIONEER:
Theoretically clean
limited by experimental input

O-|— — O—I—

3070

10C 22Mg 38Km 46V
14O 26A|m 34Ar 50Mn
34C| 4280 54CO

h L }lf”n

62Ga

|

74Rb

o

0 20
Z of daughter

30

40

Super-

allowed

1

ek F )
N e 7 ) ¥

PEKING UNIVERSITY

<2/16>



Experimental Input for V4
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Experimental Input for V4
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Experimental Input for V4
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2019 0.97420(10)exp (18)r 0.2243(5 0.9994(4 1.4 o
2020
2022
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“PDG |V

2019 0.97420(10)exp (18)r 0.2243(5 0.9994(4 1.4 o
2020 0.97370(10)exp (10)re 0.2245(8) 0.9985(3)(4) 330

2022
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“PDG |V

2019 0.97420(10)exp (18)r 0.2243(5 0.9994(4 1.4 o
2020 0.97370(10) exp (10) R 0.2245(8) 0.9985(3)(4) 3.3 o
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“PDG |V

2019 0.97420(10)exp (18)r 0.2243(5 0.9994(4 1.4 o
2020 0.97370(10) exp (10) R 0.2245(8) 0.9985(3)(4) 3.3 o

2022 0.97373(10) exp (10)rc (27)xs 0.2243(8) 0.9985(6)(4) 29 0
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PDG 2019 ~ 2022
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» PDG made several updates for CKM unitarity these years:

"PDG il Ve,

2019 0.97420(10)exp (18) R 0.2243(5) 0.9994(4 1.4 o
2020 0.97370(10) exp (10) R 0.2245(8) 0.9985(3)(4) 3.3 o
2022 0.97373(10) exp (10)rc (27)xs 0.2243(8) 0.9985(6)(4) 290

> V,, in this table is from the average of K,;, and K5 decays.

{ |Vus| = 0.2252(5) a scale factor of 2.7

|Vaus| = 0.2243(4) C — |V..;| = 0.2243(8)
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EWRC from Dispersion Relation Analysis
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Marciano and Sirlin!,
vector dominance model(VDM).

V.o | = 0.97420(18)rc (10) 7

Phys. Rev. Lett. 96, 032002 (2006).

C.-Y. Seng, M. Gorchtein and M. J.
Ramsey-Musolf?.
dispersion relation & data-driven analysis.

V22PY | = 0.97370(10)rc (10) £,

3a. [dQ? m3,
27 Q? m%, + Q2

DXVI‘HH -

My (Qz)

0.08 -

Phys. Rev. Lett. 121, no.24, 241804 (2018).
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YyW-box Diagram

» yW-box diagram for neutron beta decays. Non-perturbative hadronic effects happen here.

<5/16>



Axial yW-box Correction
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» The nucleus-independent electroweak term dominates the uncertainty of radiative correction, which is

universal for both nuclear and free neutron beta decay.

q\ fa  gx h/(f:f}

» According to Sirlin®, among various contributions, only the axial YW-box contribution is sensitive to

hadronic scales
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» The nucleus-independent electroweak term dominates the uncertainty of radiative correction, which is

universal for both nuclear and free neutron beta decay.

q\ fq g\ .:;f;t}

» According to Sirlin®, among various contributions, only the axial YW-box contribution is sensitive to

hadronic scales

- 3 [ atee™ (Hyw) |7 7520 0)] | 1)
Ji" = zﬁ’)’“’u, — lnyﬂd JA = Uy, vsd
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» The nucleus-independent electroweak term dominates the uncertainty of radiative correction, which is

universal for both nuclear and free neutron beta decay.

q\ fq g\ .:;f;t}

» According to Sirlin®, among various contributions, only the axial YW-box contribution is sensitive to

hadronic scales

- Tit = 5 [ dac (B,G) |7 [ @) )] | Hi) - Mz (Q?)
JIm = Eﬂ’y u — lny d J)* = Uy, vsd
/ 3 W 34 7u
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Review of the Result of Pion Channel 9"’}]
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» Box term could be expressed as a momentum

0.08 T 17T T T 171 T 17T T T 171 T T 1T T T 1T T T 1T T T 1T
integral for MH(Qz): :
VA dQ* mW 2
Uw |H 2 2 My (Q ) 0.06
Q? my, +Q '
» The uncertainty for the non-perturbative part was _
: . 2 o 641 i
estimated by low energy constants from chiral S5 TS Cont. Limit, Iwasaki
— 32D-fine —— Cont. Limit, DSDR
. - — 32D PT (n=4 match with n=3)
perturbation theory. — 24D —_PT (n =4 down to 1 GeV)
oo | Shorewant || g, 2aev
» We calculated the box term for pion channel”, ’ |
WhiCh reduced the uncertainty fOr the non- O 11 1 1 | 11 1 1 | I T S T I R o 11 1 1 l 11 1 1 i 11 1 1 I L1 1 |
. 0 1 2 3 0 1 2 3 4
perturbative part by a factor of 10. Q’ [GeV’] Q” [GeV]

» This calculation has been confirmed by an independent lattice calculation.

J.-S. Yoo, T. Bhattacharya, R. Gupta, S. Mondal, and B. Yoon, Phys. Rev. D 108, 034508 (2023).
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Review of the Result of Pion Channel
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»Our calculation leads to a reduction of the total theoretical uncertainty from theory by a factor of 3.

[Vaud| = 0.9739(28)exp (5)th — 0.9740(28) exp(1)tn
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»Our calculation leads to a reduction of the total theoretical uncertainty from theory by a factor of 3.

[Vud| = 0.9739(28)exp (5)tn — 0.9740(28) exp(1)th

»PDG 2022 cites our calculation and look forward to improvement for experimental input.

Theoretical uncertainties in pion beta decay are very small [21], leaving open
more than an order of magnitude improvement of its experimental branching ratio before theory
uncertainties become a problem. Although challenging, improved measurements of pion beta decay
currently under discussion would allow this decay mode to compete with superallowed beta decays
and future neutron decay efforts for the most precise direct |V,4| determination.

21] X. Feng et al., Phys. Rev. Lett. 124, 19, 192002 (2020), [arXiv:2003.09798].
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Review of the Result of Pion Channel

»Our calculation leads to a reduction of the total theoretical uncertainty from theory by a factor of 3.

[Vud| = 0.9739(28)exp (5)tn — 0.9740(28) exp(1)th

»PDG 2022 cites our calculation and look forward to improvement for experimental input.

Theoretical uncertainties in pion beta decay are very small [21], leaving open
more than an order of magnitude improvement of its experimental branching ratio before theory
uncertainties become a problem. Although challenging, improved measurements of pion beta decay
currently under discussion would allow this decay mode to compete with superallowed beta decays
and future neutron decay efforts for the most precise direct |V, 4| determination.

[21] X. Feng et al., Phys. Rev. Lett. 124, 19, 192002 (2020), [arXiv:2003.09798].

»The PIONEER experiment up to the PeV mass scale. The later phases of the PIONEER experiment aim at improving
the experimental precision of the branching ratio of pion beta decay, 7% — 7% *v(y), to
test CKM unitarity and to extract |V,q4| at the 0.02% level.

from pion beta decay at the O | 27 % ‘ O _ 02 %

is aimed at improving the V,;

0.02% level.
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»The PIONEER experiment up to the PeV mass scale. The later phases of the PIONEER experiment aim at improving
the experimental precision of the branching ratio of pion beta decay, 7% — 7% *v(y), to
test CKM unitarity and to extract |V,q4| at the 0.02% level.

from pion beta decay at the o 0
004 eve 027%  mmmp  0.02%

» If the funding decisions are positive and proceed expeditiously, Phase I of PIONEER will begin in 2029.

is aimed at improving the V,;
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» There are 4 types of contractions for meson channel:

em
I

» For each type, the contraction for baryon is more complicated

than meson.

» To solve this problem, we take the field-sparsening method”.
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» There are 4 types of contractions for meson channel: » While for baryon channel, there are 10 types:
Jjem PYTEL > PR NS RN i
Jem
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» There are 4 types of contractions for meson channel: » While for baryon channel, there are 10 types:
Jjem PYTEL > PR NS RN i
Jem
70 T A <® & =7
WA
JmA ’
(a) (b)
Jem VV’ Jem
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» For each type, the contraction for baryon is more complicated

than meson.

» To solve this problem, we take the field-sparsening method”.

(1
»The computational cost has been reduced by a factor of 103, while the precision remains nearly unchanged.
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» The variance of a physical quantity is associated with its square’s expectation.

» The signal-to-noise of ©’s two-point function is under good control:

E(n) ~ e~ Mrl

<’\_/ > - <v I —2m .t
Var(n) ~ ¢

» In noise of neutron’s two-point function, the simplest structure is three-m:

» For physical ensembles, as T becomes larger, the data from neutron will be too noise to be used.
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» For physical ensembles, Mn > §m7n as T becomes larger, the data from neutron will be too noise to be used.
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» Baryon has different spin structure from meson, so they have different intermediate state:

» The spatial component for axial current has even parity, so:
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» Baryon has different spin structure from meson, so they have different intermediate state:

» The spatial component for axial current has even parity, so:

(7] Sy, alm) =0 (n|Ji, alp) # 0
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» Baryon has different spin structure from meson, so they have different intermediate state:

» The spatial component for axial current has even parity, so:

(7] Sy, alm) =0 (n|Ji, alp) # 0

proton\/

%

/ dtH (t)e~ (Ex—m)t
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» To solve the signal-to-noise problem and improve the convergence of temporal integration., we use the

infinite volume reconstruction (IVR)* method.
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o 24D, At + At,=0.77 fm
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0.061
ke
Eg 0.04
0.02-
0] £,=0.19 fm
0 0.2 0.4 0.6 0.8 1
Q’[GeV’]
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» To solve the signal-to-noise problem and improve the convergence of temporal integration., we use the

infinite volume reconstruction (IVR)* method.

. 24D, Aty +At, =0.77 fm
0.08-
0.06-
o
Eg 0.04
0.021 t,=0.19 fm
t,=0.39 fm
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NPT TS
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» Box term encounters a notably increased noise » we can use the model-independent relation:
originating from M, (Q?) at small Q? region. / dBzH (tg, %) = =3 5 A (,Lol,p + ,&n)
24D 32Dfine Cont. PDG

—39a(pp + pn) -3.31(49) -3.02(53) -2.65(1.31) -3.366(3)
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» We use two lattice ensembles generated by RBC and UKQCD Collaborations and both of them have physical pion mass:

141.2(4) 243x64 0.1944 4.665

32D-fine 143.0(3) 323x64 0.1432 4.582 69
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Summary

» The first lattice calculation of yYW-box correction was successfully conducted in the pion channel

and has been confirmed by an independent lattice calculation.

» We perform the first realistic lattice QCD calculation of the universal yYW-box correction to both

super-allowed nuclear and neutron beta decays.

» We incorporate long-distance contributions to the hadronic function using the infinite-volume

reconstruction(IVR) method.
» Our calculation tends to decrease CKM discrepancy ( ~ 1.8 o).

» Better error estimation requires configurations with more lattice spacings of different sizes as input.
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