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Hubbard Model

H = −κ ∑
⟨x,y⟩

(a†
x,↑ay,↑ + a†

x,↓ay,↓)

tight−binding

−
U
2 ∑

x

(nx,↑ − nx,↓)2

on−site interaction

U

Used to describe carbon nanomaterial, e.g. graphene 


Apply Hubbard-Stratanovich transformation to describe 
the system with bosonic auxiliary fields ϕ

S =
1

2Ũ ∑
x,t

ϕ2
x,t − log det M[ϕ] − log det M[−ϕ]
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Current Issues with HMC

, , Nx = 2, Nt = 1 ϵ = 0.1 a = 99.8 %
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Current Issues with HMC
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Normalizing Flows
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Normalizing Flows

z0 z1
f1(z0)

zi zi+1
fi+1(zi)

. . .
fi(zi�1)

zk. . .
fk(zk�1)

= �

z0 ⇠ qZ(z0) zi ⇠ pi(zi) � ⇠ pk(zk) ⇡ e�S

Advantages


Embarrassingly parallel sampling


Independent and identically distributed (i.i.d) samples -> small autocorrelation times


Correctly normalized distribution  estimation of thermodynamic observables→

Already been applied to :


3+1D LQCD  
Abbot, et al., 2024


Fermionic lattice field theories  
Albergo, et al., 2021


Thermodynamic observables  
Nicoli, et. al., 2020


-Theory  
Albergo, et al., 2019


…

ϕ4
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Result: Hubbard Model with Normalizing Flows




70.1% effective sampling size


Nx = 2, Nt = 1
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Result: Hubbard Model with Normalizing Flows




70.1% effective sampling size


74.2% acceptance rate





Nx = 2, Nt = 1

τ = 1.19 ± 0.04

τHMC = 443 ± 136
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Result: Hubbard Model with Normalizing Flows


Nx = 2, Nt = 2

!
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Equivariant Normalizing Flows

Prior 
Distribution
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Equivariant Normalizing Flows

Prior 
Distribution

Canonicalized 
Distribution

Flowed 
Distribution

T gθ
Final 

Distribution

T−1

z ∼ qZ ϕ = T−1gθ(Tz)

See also: J. Köhler et al., 2020, D. Boyda et al., 2021 
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Equivariant Normalizing Flows

Prior distribution
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Equivariant Normalizing Flows

z → {z if z1 + z2 ≥ 0
−z else

Prior distribution

z1

z2  SymmetryZ2

z1

z2
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Z2

7

Equivariant Normalizing Flows

Prior distribution

z1

z2

(z1, z2) → {(z1, z2) if z1 − z2 ≤ 0
(z2, z1) else

Spacetime Symmetry

z1

z2

z1

z2
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Spacetime

7

Equivariant Normalizing Flows

Prior distribution

z1

z2

z → z − 2π ⋅ round ( z
2π )

Periodicity Symmetry

z1

z2

z1

z2
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Equivariant Normalizing Flows
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Equivariant Normalizing Flows

Z2

Spacetime

Periodicity
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Results: Equivariant Flow




92.3% effective sampling size


Nx = 2, Nt = 1
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Results: Reweighted Equivariant Flow 




92.3% effective sampling size


84.8% acceptance rate





Nx = 2, Nt = 1

τ = 0.72 ± 0.02

τHMC = 443 ± 136
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Results: Equivariant Flow




73.9% effective sampling size


Nx = 2, Nt = 2
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Results: Reweighted Equivariant Flow




73.9% effective sampling size


69.4% acceptance rate


Nx = 2, Nt = 2

τ = 1.19 ± 0.04
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Summary and Outlook

For the first time, applied normalizing flows to the Hubbard model


Incorporated symmetries in the architecture


Correctly reproduced distributions for small lattices


Outlook


Reach larger lattices


Calculate further observables, e.g. correlators
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Backup Slides
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The Hubbard Action

The Hubbard action in the spin basis reads

S =
1

2Ũ ∑
x,t

ϕ2
x,t − log det M[ϕ] − log det M[−ϕ],

S =
1

2Ũ ∑
x,t

ϕ2
x,t − log det M[iϕ] − log det M[−iϕ] .

and in the particle-hole basis

The fermion matrix  readsM

Me[ϕ]x′ t′ ,xt = δx′ ,xδt′ ,t − [eh]x′ ,xeϕxtBt′ δt′ ,t+1, Md[ϕ]x′ t′ ,xt = (δx′ ,x − hx′ ,x) δt′ ,t − eϕxtδx′ ,xBt′ δt′ ,t+1,

with the hopping matrix  and  incorporating the anti-periodic boundary conditions in time direction.h Bt = {−1 if t = 0
+1 else
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Real NVP

{
yl+1

u = yl
u

yl+1
d = yl

d ⋅ es(yl
u) + m(yl

u)

The RealNVP architecture:

Block Transformation

Splitting

{
yl

u = yl+1
u

yl
d = (yl+1

d − m(yl+1
u ))e−s(yl+1

u )

Trivially Invertible

Tractable Jacobian Det

Jg = [ 1 0
⋆ e−s ]

yl = (yl
u, yl

d) , yl ∈ ℝ|Λ|

Checkerboard Masking
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Training the Flow
- We train the normalizing flow using the Reverse-KL divergence

KL(qθ | |p) = ∫ 𝒟[ϕ]qθ(ϕ)ln ( qθ(ϕ)
p(ϕ) ) = β(Fq − F)

- Ignoring the  irrelevant (and unknown) constant , the loss readsF

βFq = 𝔼z∼qZ [S(gθ(z)) − ln
dgθ

dz
(z) + ln qZ(z)]
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Neural Importance Sampling (NIS)

1. We define the unnormalized importance weights 


2. We estimate the partition function 


3. From which we have direct access to the free energy 


4. And other thermodynamic observables like pressure  and entropy 

w̃(ϕ) =
p̃(ϕ)
qθ(ϕ)

=
exp(−S(ϕ))

qθ(ϕ)

Z = ∫ D[ϕ] qθ(ϕ) w̃(ϕ) ≈ ̂Z =
1
N

N

∑
i=1

w̃(ϕi)

̂F = − T ln ̂Z

p = −
F
V

H = β(−F + U)
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NMCMC: Neural Markov Chain Monte Carlo

min (1,
p0(s |s′ ) p(s′ )
p0(s′ |s) p(s) ) = min (1, q(s) exp(−βH(s′ ))

q(s′ ) exp(−βH(s)) )
Low dependence between new candidates and previous elements in the chain.  
This leads to:

• Efficient and parallel sampling 
• New estimates have very small autocorrelation time

Standard MCMC updates a system configuration by proposing a new candidate configuration following the evolution of the chain 

Configurations are thus accepted based on accept/reject algorithm 

In NMCMC the idea is to take ne candidates drawn from the trained sampler q(s)

See also: M. S. Albergo et al., 2019
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Equivariant Flow Output

Nx = 2, Nt = 1
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Outlook: Larger Lattice Sizes

Current lattice sizes for the honeycomb lattice:


- HMC:  sites


- Exact diagonalization:  sites


- Tensor networks, e.g. PEPS:  sites

2 × 21 × 21

2 × 3 × 3

2 × 15 × 15

See also: J. Ostmeyer, Lattice 2022 



Dominic Schuh - University of Bonn LATTICE Conference 2420

Comparison

HMC Fermionic PEPS Exact 
Diagonalization

Normalizing 
Flows

Lattice Size L ≲ 100 L ≲ 15 L ≲ 3 L ≲ 2 (for now)

Sign problem Yes No No Yes

Performance GPU-intensive RAM-intensive CPU-intensive GPU-intensive

Excited States Few lowest, 
expensive

Some specific, 
instabilities Yes Few lowest, 

expensive

See also: J. Ostmeyer, Lattice 2022 


