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Dual Representation of Lattice QCD

@ Use “standard” QCD lattice action (staggered
fermions, Wilson gauge action) 4t

@ But: change order of integration:

o gauge links {U,(x)} first
o quarks afterwards (Grassmann integration)

@ At 8 = 0: link states are mesons and baryons
[Rossi, Wolff, NPB 248 (1984)]

@ For 8 > 0: use strong coupling expansion

o O(p): via studied via reweighting

2-dim. example of configuration

[Langelage et al. PRL 113 (2014)], in terms of dual variables
o for any order: has been mapped to a tensor
network [Gagliardi, U, PRD 101 (2020)]

0.002808

0.002496

@ Sign problem in regime g = 5 <1
mild enough to study full phase diagram:
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e baryons are heavy (almost static)
o color singlets closer to physical states
= sign reweighting feasible: Af ~107°

0.000936

0.000624

0.000312

0.000000




Strong Coupling Limit

Regime where sign problem is mild: SRR ) G
Plx—u) P(x)h(x) Wlx+u)
A T 6 + e
Limit of strong coupling: § = 2 0 B )v()
_detbPT > M0 Bly.v.y)

@ change order of integration: {U,(x)} first!
@ “dual” representation: via color singlets on the links!

@ at strong coupling: mesons and baryons “a([ﬂ) lattice spacing

(non-perturbative, e.g. fromT_, M, <{y>)
Interesting regime, because:

@ exhibits chiral symmetry breaking and confinement
@ (almost) no sign problem

@ fast simulations (no supercomputers necessary) -

= complete phase diagram can be calculated =0 B>
Caveat:

@ infinitely strong coupling — coarse lattices

[ Gauge corrections for § > 0 needed! J




The phase diagram in the strong coupling limit

Chiral and nuclear phase boundary obtained via Monte Carlo:

@ at finite quark mass, the tri-critical point turns into Z, critical end point

@ chiral and nuclear first order lines also match at finite quark mass
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Goal: What does the Phase Diagram including [ look like?

Phase Diagram in the Strong Coupling Regime and Chiral Limit:
@ Via reweighting in 8 from 8 = 0: O(3) corrections for SU(3)

[Langelage, de Forcrand, Philipsen & U., PRL 113 (2014)]
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[measured via Worm algorithm] [one of serval possilbe scenarios]

Questions we want to address:

@ Do the nuclear and chiral transition split?

@ Does the tri-critical point move to smaller or larger p as [3 is increased?



Dualization of full lattice QCD

combined Taylor expansion in the reduced gauge coupling 5’ = % =L and

2
~ .. . . g
quark mass myg, giving rise to dual variables:
np, Np, de, d¢ and my:

np+n 2
SONYSEND O | £ | Foom | (o S

{"ga”p} P
{de,dg,my}

Evaluate 1-link integrals in G in terms of generalized Weingarten functions

decouple those integrals via a choice of orthogonal projectors

L~ Bl

collect operators into a local tensor Tf‘dwpd that depends on participating dual
degrees of freedom Dy = {my, di, 44, Nx, v, P,

H

Final dual partition function:

Bretip eHadu,0fp H(2ﬁ1q)mx PPy
’ _ T, Dx
Z(B, g, ig) = 2 :Jf ZH np'np' ke!(ke + |fe])! ml )
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[G. Gagliardi & W. U. PRD 101, (2020) 034509]

Truncation at O(3%): allow for plaquette occupations (n,, B,) € {(1,1),(2,0), (0,2)}



Monte Carlo for TN-Representation via Vertex Model

@ Each tensor can be transformed into a vertex: L
weight depends on directions =

@ Number of distinct vertices: @),A@}

limit O(% _0(BH) oFE) o) ety % 5

all 221 3485 51125 681013 ©r L.
chiral 176 2060 44672 607792 .
quenched 1 1 25 137 s
T

@ Some vertices have negative weight,
but most configurations are positive
after contraction

@ Use heatbath algorithm for to modfiy
vertices along closed countours; has
been parallelized; Worm algorithm not
yet applicable beyond O(3)

[Pattanaik & U. PoS Lattice (2023)]

@ At ug = 0: crosschecked with HMC

@ Lattice Setup: 83x4, 12°x4 and 16® x 4, SC, and O(B), O(5?) for
B =10.0,...,1.0] and at T = 0.8,0.85,0.9,0.95, 1.0, all for chiral limit




Results: Baryon Density and Chiral Condensate

@ All results relative to the location of the strong coupling tricritical point:
TN, =0.85, usy2, = 1.99
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Results: Baryon Susceptibility, Chiral Susceptibiltiy

@ All results relative to the location of the strong coupling tricritical point:
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Results: Average Plaquette

@ All results relative to the location of the strong coupling tricritical point:

TTCP
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@ Average plaquette and its susceptibiltiy: no imprint of the chiral/nuclear

transition
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Preliminary Result on the chiral TCP /nculear CEP

@ To compare O(B) with O(8?): restricted to rather small lattice volume
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@ Extrapolation to thermodynamic limit requires larger volumes:
expensive for O(3%)

@ Does p5F(B) move to smaller values? Not quite...
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Phase Diagram in the Strong Coupling Regime 5 > 0

@ Still required for O(B?): anisotropy 2 = = ¢(n, B) at finite 8

@ Taking into account the 3-dependent renormallzatlon of aT and aug:
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@ Back-bending vanished

@ Even weaker (no?) (-dependence after renormalization:
aT — &(v, B)aT, aps — &(v, B)aps



Conclusions

Results:

Dual representation established that is in principle not truncated in 3
Caveat: it re-introduces the sign problem gradually with 3
Still at O(B?): TCP has weak dependence on 3 up to 8 <1

If TCP remains invariant for higher orders in 3: CEP also exists in the continuum!

Prospects:

Character expansion with staggered fermion feasible??? SC regime up to 8 ~ 67

Connect O(3?) results to nuclear liquid gas transition at finite quark mass, low T
[Kim, Pattanaik & U. PRD 107 (2023)]

Strong Coupling LQCD on a quantum annealer allows very low T
[Luu, Kim & U. PRD 108 (2023)]

Extending the Hamiltonian formulation of LQCD to > 0 and/or Nf = 2,
well suited for quantum simulations:
—  Required QC Resources: [talk by Michael Fromm (Tue 16:35) |
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