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Introduction

η = i∂ω ∫ d3x∫
∞

0
dt eiωt⟨[Txy(x, t), Txy(0,0)]⟩ |ω=0

The quark-gluon-plasma produced in heavy-ion collisions are described by transport coefficients such 
as shear and bulk viscosity, and various conserved-number diffusion coefficients.

Kubo relation for shear viscosity ( )  η
Here  and  are shear and bulk viscosities respectively.η ζ

These transport coefficients are key input to hydrodynamical models
Tij − Teq

ij = − η (∇iuj + ∇jui −
2
3

δij ∇kuk) − ζ δij ∇kuk

Perturbation theory doesn’t converge; even at  GeV 
the shear viscosity to entropy ratio ( ) for leading order (LO) 
is twice that of next-to-leading order (NLO).

T ∼ 100
η/s

The shear viscosity Kubo relation is written in real time but 
lattice QCD deals with Euclidean time correlation function.

1/13

Jacopo Ghiglieri JHEP03 (2018) 179et al . ,



η(T) = lim
ω→0

ρshear(ω, T)
ω

G(τ) = ∫
∞

0

dω
π

cosh[ω(1/2T − τ)]
sinh(ω/2T)

ρ(ω, T)

Gshear(τ) ∝ ∫ d3x ⟨πij(0,0⃗), πij(τ, ⃗x)⟩ πij = Tij −
1
3

δijTkk

  G(τ) ≡ ⟨Txy(x, iτ), Txy(0,0)⟩

This is known as ill-conditioned inversion problem that requires determining  from limited 
and incomplete information.

ρ(ω)

• The lattice doesn’t have continuous symmetry so no obvious choice for EMT.

• The EMT on lattice requires renormalisation constants. 

The shear viscosity on lattice is accessible through analytical continuation  
Shear viscosity on lattice
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Recent method for determining  
Shear Viscosity in Quenched QCD

 Harvey B. Meyer, Phys.Rev.D 76 (2007) 101701
F. Karsch and H. W. Wyld, Phys. Rev. D 35, 2518

Earlier pioneering work



Renormalisation

We determine the constant  using a method inspired 
by the work of Giusti and Pepe.

c1

⟨ϵ + P⟩τF
= c1(τF) ⟨1
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Luis Altenkort et al., Phys. Rev. D 108, 014503[L. Giusti and M. Pepe, Phys. Rev. D 91, 114504 (2015) c1

E(x, τF) =
1
4

Fa
ρσ(x, τF) Fa

ρσ(x, τF)

Uμν(x, τF) = Fa
μρ(x, τF) Fa

νρ(x, τF) −
1
4

δμν Fa
ρσ(x, τF) Fa

ρσ(x, τF)

Tμν(x, τF) = c1(τF) Uμν(x, τF) + 4c2(τF) δμν E(x, τF)

Define the density operator and the traceless tensor operator

Here  and  are the coefficients of the traceless and 
pure-trace parts of the EMT, respectively.

c1 c2

 : Flow timeτF

We will use gradient flow to write the EMT on lattice. 
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Continuum Extrapolation

Gt.l.(Nτ)
Gnorm(Nτ)

= m ⋅ N−2
τ + b

We perform the continuum extrapolation a → 0
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Tree-level-improved EMT correlators in the shear channel
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The continuum extrapolation of EMT correlators in shear channel
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Tree-level-improved EMT correlator

Luis Altenkort et al., Phys. Rev. D 108, 014503
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Zero-flow-time Extrapolation
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The              extrapolation of  EMT correlators in shear channel Extrapolated correlators in shear channelτF → 0

The order of extrapolation is important because the continuum extrapolation eliminates terms of 
form  , so that the  extrapolation will consist only of positive powers.a2/τF τF

G(τF /τ2) = A + BτF /τ2

T = 1.5Tc

Luis Altenkort et al., Phys. Rev. D 108, 014503

T = 1.5Tc
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ρNLO
shear(ω) = ρLO

shear(ω) − 4dAω4 coth( ω
4T ) g2(μ̄)Nc

(4π)3
× [2

9
+ ϕη

T(ω)]
ρ(ω)
ωT3

=
A
T3

+ B
ρpert(ω)

ωT3

ρ(ω)
ωT3

=
A
T3

C2

C2 + (ω/T)2
+ B

ρpert(ω)
ωT3

ρLO
shear(ω) =

dAω4

10π
coth( ω

4T )

Here  is a coefficient allowing for a rescaling of the perturbative result, and  is the size of 
the IR contribution, which determines the transport coefficient of interest.

B A

We first construct the spectral  function using -fits with  models based  on perturbative 
calculations and then determine the viscosities …

χ2

The infrared behaviour of the spectral function is not known a priori, and must be modelled.

M1: M3:

Model Spectral Reconstruction

G(τ) = ∫
∞

0

dω
π

cosh[ω(1/2T − τ)]
sinh(ω/2T)

ρ(ω, T)

Now we integrate the spectral function with the kernel function to get the model correlators.
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: dimension of adjoint representationdA



Results

Spectral fit function in the shear channelThe comparison of fit and lattice correlators

η/s = 0.15 − 0.48, T = 1.5Tc

Luis Altenkort et al., Phys. Rev. D 108, 014503
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We have also tried to capture possible missing structure in the UV part of spectral function 
with anomalous dimension by replacing  with .ω4 ω4+γ



Towards calculating  
Shear Viscosity in Full QCD 



Shear viscosity in Full QCD

EMT renormalisation in Full QCD

The inclusion of fermions adds significant complexity to the problem, both in terms of technical 
and computational aspects. The first challenge is determining the renormalisation constants.

7

We extend the methodology developed in quenched QCD for shear viscosity to full QCD

Shear viscosity: only  components contribute                                                                           off − diagonal
One linear equation  but two unknowns  and   ϵ + p = ⟨Txx − Ttt⟩ Z1 Z3

 requires two independent ensembles to determine renormalisation factors⇒

The EMT contains the following terms in  symmetry  SO(4)

• Our idea is to vary the imaginary isospin chemical potential ( ) μ = iμI 8/13

T1
μν(x, τF) = Z1(τF)[Fa

μρ(x, τF)Fa
νρ(x, τF) −

1
4

δμνFa
ρσ(x, τF)Fa

ρσ(x, τF)] T2
μν(x, τF) = Z2(τF) δμνFa

ρσ(x, τF)Fa
ρσ(x, τF)

T3
μν(x, τF) = Z3(τF) ψ̄(x)[γμDν + γνDμ −

1
2

δμνγαDα]ψ(x) T4
μν(x, τF) ≡ Z4(τF) δμνψ̄(x)γαDαψ(x)

T5
μν(x, τF) ≡ Z5(τF) δμνm0ψ̄(x)ψ(x) Hiroki Makino, Hiroshi Suzuki PTEP 2014, 063B02 



u, d, s

RW π
3 V1

V3

V2

Phase transition at  and μu
I /T = − μd

I /T = 2π/3 μs
I /T = 0

P
P0

=
Pu(π − 2π/3) + Pd(π + 2π/3) + Ps(π)

Pu(π) + Pd(π) + Ps(π)
=

1
81

Change  in following manner:   and μI /T μu
I /T = − μd

I /T μs
I /T = 0

 PV1
= P(π) + P(π − μI /T) + P(π + μI /T)

 PV2/V3
= P(π ∓ 2π/3) + P(π ∓ 2π/3 − μI /T) + P(π ∓ 2π/3 + μI /T)

Free Theory Motivation

P(θ) = −
T4

2π2 ∑
n∈𝒵−{0}

einθ

n4

The pressure contribution per fermionic degree of freedom

Here  is angle from Polyakov loop vacuum θ

For usual case  θ = π P0 =
7
8

π2T4

90

P
P0

=
Pu(π − π/3) + Pd(π − π/3) + Ps(π − π/3)

Pu(π) + Pd(π) + Ps(π)
= 0.55026455…

Roberge-Weiss phase transition occurs at  for all the flavoursμI /T = π/3

 and  are Polyakov loop vacuumsV1, V2 V3 9/13



 measurement⟨Txx − Ttt⟩

We calculate pressure  as followingp(μf)

n =
N
V

=
∂p
∂μ T

⇒ p(μf) = p(μI = 0) + ∫
μf

0

∂p
∂μI

dμI

TG
xx − TG

tt = Z1(τF)(Gxα(x, τF)Gxα(x, τF) − Gtα(x, τF)Gtα(x, τF))
TF

xx − TF
tt = Z3(τF) ψ̄(x)(γxDx − γtDt)ψ(x)

 measurementϵ + p
ϵ + p = ϵ − 3p + 4p = I + 4p

Interaction measure  on these two ensembleI
I(T)
T4

dT
T

= N4
t [dβ ⟨−sg⟩R + ∑

q

dmq ⟨ψ̄qψq⟩R]

Ensemble 1:  ( )μu
I /T = μd

I /T = μs
I /T = 0 ≡ μi

Ensemble 2:  and  ( )μu
I /T = − μd

I /T = 2π/3 μs
I /T = 0 ≡ μf

So we will do our analysis for  at following ensembles,  ϵ + p = ⟨Txx − Ttt⟩
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Trace Anomaly
I = δμν{Tμν}R(x) = −

β
2g3

{FμνFμν}R(x) − (1 + γm)m{ψ̄ψ}R(x)

# due to running coupling # due to mass scale

The trace anomaly calculated with HISQ on  lattice (  MeV)403 × 8 T = 409.7

The  temperature values are taken from “The equation of state in (2+1)-flavor QCD” 
A. Bazavov, Phys. Rev. D 90, 094503

zero
et . al . ,
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μu = − μd = iμI, μs = 0 μu = − μd = iμI, μs = 0



Pressure Measurement  

Number density ( ) measurement is in progressn
We expect  to be smooth function of  at high temperaturen μI

p(μf) = p(μI = 0) + ∫
μf

0

∂p
∂μI

dμI

Number density:
n =

1
4

T
V ⟨Tr[M(μ)−1 ∂M(μ)

∂μ ]⟩

 and  ( )μu
I /T = − μd

I /T = 2π/3 μs
I /T = 0 ≡ μf

Integrating it will give us pressure at p(μf)
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Conclusion and Outlook
Constructed renormalised EMT using gradient flow

η/s = 0.15 − 0.48, T = 1.5Tc

Developed the idea to find renormalisation constants 

Ample room for improving spectral modelling in  ~  to get better fit resultsω [1 − 5]T

Continuum and zero-flow limit for renormalised correlators 
Extracted the shear viscosity by modelling the spectral function

Quenched QCD

Full QCD

We have trace anomaly in hand and are working on calculating the pressure.
Once the renormalisation constant is determined, we apply the method that we developed 
in quenched QCD.

Renormalised EMT for full QCD 
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