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⟨O⟩ =
1
Z ∫ 𝒟ϕ e−S[ϕ] O

Lattice QCD gives us static correlation functions.
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Hamiltonian methods can compute dynamical 
correlation functions.

⟨O(t)⟩ = ⟨ψ |eiĤtÔe−iĤt |ψ⟩|ψ⟩in e−iĤt Measure
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Can we bridge lattice QCD and quantum simulation?

⟨O(t)⟩ = ⟨ψ |eiĤtÔe−iĤt |ψ⟩

⟨O⟩ =
1
Z ∫ 𝒟ϕ e−S[ϕ] O

Static correlators 
inform state 
preparation. 

Quantum simulator computes 
dynamical correlators.

|ψ⟩in e−iĤt Measure
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|ψ⟩in → e−iĤt → Measure
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Classically determined quantum circuit for ground states

Ansatz 
manifold

|ψ( ⃗Λ)⟩

Target state 

|Ω⟩
Path Integral Monte Carlo 
(PIMC) informed moment 

optimization

|ψ( ⃗Λ0 )⟩
Simulator details

Trapped ion quantum computer from 
Monroe Lab (UMD, 2016)
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Ground state of  theory(1 + 1)D ϕ4

m2

λ
( )N → ∞

Phase transition
⟨ ̂ϕn⟩ = 0

⟨ ̂ϕn⟩ ≠ 0

Continuum limit: 

 along some 
line of constant physics.
m2, λ → 0,0
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Ground state of  theory: Monte Carlo results(1 + 1)D ϕ4

m2

λ
( )N → ∞

⟨ ̂ϕn⟩ = 0

⟨ ̂ϕn⟩ ≠ 0

Correlations Non-Gaussianity

2n
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Most states of  bosons admit the decompositionN

|ψ⟩ = ÛG ∑
⃗n = n1, …, nN

n1 + … + nN ≤ R

c ⃗n ̂a†n1
1 … ̂a†nN

N | 0⃗⟩

Quantum states of  bosonsN

 is the 
stellar rank of this state.

R ∈ ℕ ∪ {0}

The bosonic states which do not admit the above 
decomposition are said to have an infinite rank.

Chabaud, U., Markham, D., & Grosshans, F. (2020). Stellar representation 
of non-Gaussian quantum states. Physical Review Letters, 124(6), 063605.
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Rank 0
Gaussian

Rank 1 Rank 2 … Rank ∞

Ground state of  
 theory(1 + 1)D ϕ4

Chabaud, U., Markham, D., & Grosshans, F. (2020). Stellar representation 
of non-Gaussian quantum states. Physical Review Letters, 124(6), 063605.
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Rank 0
Gaussian

Rank 1 Rank 2 … Rank ∞

Ground state of  
 theory(1 + 1)D ϕ4

Chabaud, U., Markham, D., & Grosshans, F. (2020). Stellar representation 
of non-Gaussian quantum states. Physical Review Letters, 124(6), 063605.

Finite rank states can get arbitrarily close to infinite-rank 
states (in trace distance).
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Simpler choices of finite rank states

|ψ⟩ = ÛG ∑
⃗n = n1, …, nN

n1 + … + nN ≤ R

c ⃗n ̂a†n1
1 … ̂a†nN

N | 0⃗⟩

|ψ⟩GEP = ÛG |0⟩ |ψ⟩(R,Q) = ⊗N
i=0

̂Si(r) ∑
⃗n = n1, …, nq

n1 + … + nq ≤ R
q ≤ Q

d ⃗n ̂a†n0
i … ̂a†nq

i+q |0⟩
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(m2, λ) = (0.6,1.5)

Energy minimization results in comparable ansatz energies…
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…but exhibit distinct levels of non-local correlations and 
non-gaussianity.

(m2, λ) = (0.6,1.5)
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It is desirable to go beyond the single-
dimensional metric of energy.

Ground state 
energy

E ( ⃗Λmin)

|ψ( ⃗Λmin)⟩

Target state 

|Ω⟩

First excited 
state energy
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(m2, λ) = (0.6,1.5), (R, Q) = (2,2)

PIMC informed moment optimization

2n

Ground 
state energy

E ( ⃗Λmin)

First excited 
state energy

Minimize:

⟨Ĥ⟩ ⃗Λ +

w ∑
2n=6,8,10

(⟨ ̂ϕ2n⟩ ⃗Λ − ⟨ ̂ϕ2n⟩PIMC)
2
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(m2, λ) = (0.6,1.5), (R, Q) = (2,2)

PIMC informed moment optimization

2n2n

Minimize:
⟨Ĥ⟩ ⃗Λ +

w ∑
2n=6,8,10

(⟨ ̂ϕ2n⟩ ⃗Λ − ⟨ ̂ϕ2n⟩PIMC)
2

}
29



Classically determined quantum circuit for ground states

Ansatz 
manifold

|ψ( ⃗Λ)⟩

Target state 

|Ω⟩
Path Integral Monte Carlo 
(PIMC) informed moment 

optimization

|ψ( ⃗Λ0 )⟩
Simulator details

Ground state
 

theory
(1 + 1)D ϕ4

Bosonic states 
with finite 

stellar rank

Trapped ion quantum computer from 
Monroe Lab (UMD, 2016)

30



|ψ⟩(R,Q) = ÛG ∑
⃗n = n1, …, nq

n1 + … + nq ≤ R
q ≤ N/2

d ⃗n ̂a†n0
i … ̂a†nq

i+q |0⟩R

Ancilla

|ϕ0⟩digitized

|ϕ1⟩digitized

|ϕN−2⟩digitized

|ϕN−1⟩digitized

⋮

⋯
⋯
⋯
⋯
⋯

⋱

⊗ ⊗H H

U

U

̂S(r)
̂S(r)

̂S(r)

̂S(r)

upto Q
registers

|ψ⟩R,Q

̂PR,Q |0⟩ (R + Q − 2
Q ) controlled unitaries

Circuit blueprint
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Systematic study of the moment optimization landscape. 

Development of continuous variable state preparation strategies. 

Application of moment optimization to gauge theories. 

Utility of moment optimization in simulations of dynamics. 

Implementation on actual quantum hardware.

Outlook
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Supplementary 
slides
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Variational 
Quantum 

Eigensolver

Direct circuit 
encoding

Path-integral 
Monte Carlo 

assisted 
moment 

optimization

GROUND 
STATE 

KNOWLEDGE 
NEEDED

Input

Ground state 
wavefunction.

Quantum circuit ansatz

Computation

• Wavefunction  ansatz: 
 

• Spectral gap and 
ground state 

moments (determined 
by PIMC)

|ψ( ⃗Λ)⟩

Minimizing the energy 
of the state represented 

by the circuit using 
hybrid classical and 

quantum computing.

Minimal

Maximal

Determining the 
quantum circuit which 

encodes this known 
wavefunction.

Wavefunction 
known only for a 

limited set of 
cases.

Optimize  
to accurately 

represent a set of 
target ground state 

moments.

|ψ( ⃗Λ)⟩

Optimized state 
misses certain 
ground state 

moments.

Determine circuit 
encoding of 

moment optimized 
ansatz.
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