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Introduction

To date, we are probably still far from realizing quantum advantage over
classical algorithms. NISQ results cannot rely on ideally noiseless circuits.

However, unitary circuits, never exactly realizable on real hardware, are cur-
rently used to model most of the QC systems and algorithms in the commu-
nity, from real-time evolution to ground state computations.

We stress the need for a perspective shift for computations in the NISQ era:

replacing (unitary) circuits by non-unitary protocols, U → E

Even with fault-tolerance, some problems involve a mixed state
preparation/evolution (for example for thermal states or for modeling open
systems).
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From unitary to non-unitary channels

Ideally
Unitary circuit: pure to pure

|ψ⟩ →
∣∣ψ′〉 = U |ψ⟩

Realistically
Quantum channel: mixed/pure to mixed

ρ→ ρ′ = E(ρ) =
∑
α

KαρK
†
α

In general, noisy hardware would make any ideal unitary operator into a quan-

tum channel: EU(ρ) ≡ UρU† noise−−−→ ẼU(ρ)

While unitary operators form a group and admit inverse, quantum channels
form a semigroup and cannot be generally inverted.
Pseudoinversion might still be possible: better results with smaller chunks.

Quantum channels can also be engineered through partial measurements
and/or stochastic sampling, not only noise.
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Some useful channel representations

One can engineer a channel through Stinespring representation or via statis-
tical sampling of circuit ensembles.

Stinespring representation
Unitary on extended space

A⊗H without measurement
on ancilla register A:

ρ→ ρ′ = TrA[U(|0⟩⟨0|A ⊗ ρ)],

U ∈ SU(2q+qa)

⟨0|
U

ρ ρ′

Stochastic sampling
Sample from circuits ensamble {Ui} ∼ w(U):

ρ→ ρ′ ≃ 1

M

M∑
i=1

UiρU
†
i

ρ′ =

∫

SU(2q)

dU w(U)UρU†

sampling from w(U)

ρ Ui ρ′i ρ′ = mean{ρ′i}

In either representation, we can parameterize the protocol (Uθ⃗ or wθ⃗(U)).
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Optimizing channels for unitary targets

Unitary task:
Assume we want to apply unitary operation U ∈ SU(2q) on a noisy hardware.

Applying a specific decomposition of gates for U (or EU) actually realizes a

noisy quantum channel ẼU , not under control.

We can engineer a parametric quantum channel Ẽ (θ⃗)
U where non-unitarity is

partially under control.

Our aim is then to minimize the difference between target and real
parameterized channel

C(θ⃗) ≡ d(EU , Ẽ (θ⃗)
U )
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Proper distance between channels: the diamond norm

A proper definition of distance between two quantum channels E1, E2 is the
diamond norm of their difference:

d⋄(E1, E2) ≡
1

2
sup
n,ξ≥0

Tr |(In ⊗ E1)(ξ)− (In ⊗ E2)(ξ)|.

Each channel Ei in H is trivially extended to an operator In ⊗ Ei in A⊗H
(n = dimA), but states ξ can have non-zero entanglement entropy between A
and H subsystems.

This extension is essential, since states on which an isolated quantum channel
act are generally entangled with regions outside the channel.

Fortunately, by convexity, d⋄ is saturated by ξ pure states
=⇒ possible preparation via unitaries: ξ = V |0⟩⟨0|V †. Trace distance can
be estimated, e.g., via randomized measurements.
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Known error mitigation techniques as particular cases

Mixed protocol can be implemented in different flavours, some specializing
into already well known mitigation techniques:

• unitary mitigation channels as optimal encoders-decoders (e.g., dynamical
decoupling in the case of identity maps);

• optimal sampling of ideally equivalent circuit ensembles (similar to
randomized compiling);

• non-unitary mitigation channels as optimal channel encoders-decoders;

• non-unitary mitigation channel as embedded gate sampling;

• general circuits ensembles (e.g., optimal VQE ensembles of circuits as
self-mitigating protocols).

The more the freedom in modeling Ẽ (θ⃗) the higher the training costs: some
tradeoff is in order.
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Simple example: unitary decoding

A single parameterized circuit Mθ⃗ is trained to partially correct noise in ẼU .

Haar/Circular
random sampling

|0⟩
|0⟩
|0⟩

V ẼU
Mθ⃗ W

|0⟩
|0⟩
|0⟩

V U W
ideal

distribution

same same

ĉx;θ⃗,V,W
(nshots)

p
(ideal)
x;V,W

Cost(θ⃗)

Variational
optimizer

Sup/mean/median over V

This also gives some explanation on how VQE algorithms are typically robust
on noisy hardware.
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Case study: stochastic CNOT with asymmetric noise

Let us consider U = CNOT

E1
noise−−−→ Ẽ1 E2

noise−−−→ Ẽ2

H H

H H

Without noise E1 = E2 = ECNOT.
With asymmetric noise between the two qubits, the noisy version Ẽi are dif-
ferent!

One can convexly mix the two channels with weights wi :

Ẽ (w⃗) = w1Ẽ1 + w2Ẽ2 = w1Ẽ1 + (1− w1)Ẽ2.
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Ẽ (w⃗) = w1Ẽ1 + w2Ẽ2 = w1Ẽ1 + (1− w1)Ẽ2.
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Case study – stochastic CNOT with asymmetric noise: distance

Cost as function of mixing weight w1 for different input states

Minmaxing would select the best worst case w
(opt)
1 ≃ 0.4.
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Case study – stochastic CNOT with asymmetric noise: extension
dependence

Dependence on the extension dimension 2qA for diamond norm

In this case, no degradation on extension is observed.
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Summary

Some main useful properties of mixed state quantum computation via
parameterized quantum channels:

• generalizes unitary computing to NISQ era (give up ideal unitarity);

• it reduces to standard error mitigation techniques in some particular cases;

• can be realized in many different variants, depending on the task;

• it adapts to the specific noise properties of the QPU and gates/qubits
involved.

Some open questions:

• trainability tradeoff and scaling?

• how crosstalks in real devices affects separate gate channels?

Currently looking for collaborators for future investigations (anybody here?)
and access to larger noisy hardware resources and also feedbacks.

Thank you
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