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Lattice QCD in the strong-coupling limit …
Why bother ?

Limit of full Lattice Gauge QCD with staggered fermions       

with remnant staggered “chiral” symmetry  (for one massless flavor)

besides baryon number  

Accessible via

Analytic methods: 

Hamiltonian Perturbation Theory, Effective Lagrangian (Kawamoto and Smit, 1981) -> Spectrum

Mean-field approximation (Miura, K. et al, 2017) -> Phase diagram

Numerically: Algorithmic advantages for Euclidean Lattice Monte Carlo

Sign problem milder (gauge dof integrated out first, then fermion integral) 

Discrete dof, different set of algos (e.g. worm algorithm, efficient)

Chiral limit of staggered fermions (with exact remnant chiral symmetry)

Continuous Euclidean Time (sign problem gone, static baryons)

Predictive also away from  (e.g. via reweighting in  )

Z = ∫ 𝒟χ𝒟χ̄𝒟U eSF + βSG

χ → eiϵ(x)θχ, χ̄ → χ̄eiϵ(x)θ, ϵ(x) = (−1)∑μ xμ

UV(1) χ → eiθBχ, χ̄ → χ̄e−iθB

β = 2N/g2 = 0 β

2

Z = ∫ ∏
x

dχxdχ̄xe2amq χ̄x χx∏
μ

z(x, μ)
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FIG. 1: Left: Lattice QCD phase diagram in the strong cou-
pling limit, setting a/at = γ2 following mean-field. Different
results are obtained for different numbers Nt of time-slices:
Nt = 2, Nt = 4 [6], Nt = 6 and Nt = ∞ (i.e. continuous
Euclidean time) [17]. Right: Same, with corrected anisotropy
a/at = γ2 exp(c/γ2) and O(1/Nt) corrections. All results co-
incide. The re-entrance at low aT is a finite-Nt artifact.

baryons) [4], as a sum over discrete graphs on the lattice:

ZSC =
∑

{n,k,ℓ}

∏

x

wx

∏

b

wb

∏

ℓ

wℓ (3)

wx =
Nc!

nx!
(2amq)

nx ; wb =
(Nc − kb)!

Nc!kb!
. (4)

The mesons are represented by monomers nx ∈
{0, . . .Nc} on sites x and dimers kb ∈ {0, . . .Nc} on bonds
b = (x, ν̂), whereas the baryons are represented by ori-
ented self-avoiding loops ℓ. The weight wℓ of a baryonic
loop ℓ and its sign depend on the loop geometry [15].
Configurations {n, k, ℓ} must satisfy at each site x the
constraint inherited from Grassmann integration:

nx +
∑

ν̂=±0̂,...,±d̂

(

kν̂(x) +
Nc

2
|ℓν̂(x)|

)

= Nc. (5)

Due to this constraint, mesonic degrees of freedom
(monomers and dimers) cannot occupy baryonic sites.
This system has been studied since decades, both via

mean field [9–14] and by Monte Carlo methods [5, 6, 15].
In recent years, the latter have undergone a revival us-
ing the Worm algorithm [6, 16, 17], which violates the
Grassmann constraint in order to sample the monomer
two-point function G(x, y), from which the chiral sus-
ceptibility can be obtained. These techniques have been
applied to obtain all lattice data presented here. We
study the chiral limit mq = 0 which does not incur a
penalty in computer cost, contrary to the usual deter-
minantal approach. The staggered action SF Eq. (2)
then satisfies a U(1) “remnant” chiral symmetry, which
is spontaneously broken at low temperature and density,
with order parameter

〈

ψ̄ψ
〉

. In Fig. 1 left, we show the
(µ, T ) phase diagram in the strong-coupling (SC) limit.
It is qualitatively similar to the expected phase diagram
of QCD in the chiral limit: the transition is of second or-
der from aµ = 0 up to a tricritical point (aµT , aTT ), then

turns first order. At finite quark mass, the second order
line turns into a crossover and the tricritical point into a
second order critical endpoint. Note the different phase
boundaries obtained from lattices with different numbers
Nt of time-slices: they converge to the continuous-time
phase boundary as Nt → ∞. But the Nt-dependence is
strong, and there are indications of re-entrance at low
temperature, supported by mean-field calculations [13],
which only disappear in the continuous-time limit. There
are two reasons for this: (i) the transition temperature
is subject to O(1/Nt) corrections, as studied in [17]; (ii)
temperatures aT > 1/2 can only be explored by using
anisotropic lattices where a/at > 1. But the relation-
ship between the bare anisotropy γ in the action SF

Eq.(2) and a/at is not known exactly. Mean-field in-
dicates a/at = γ2, which was used to obtain Fig. 1 left.
Assuming the form a/at=γ2 exp(c/γ2) and allowing for
small O(1/Nt) corrections (Fig. 1 right) produces much
more consistent results.
A crucial question is whether this phase diagram de-

velops qualitatively new features as β is increased from
0 to ∞. At low temperature especially, things may
change: when β=0, the transition at µc(T =0) separates
a chirally-broken, baryon-free vacuum and a chirally-
symmetric, baryon-saturated state with one static baryon
per lattice site. That is a very crude cartoon of a nu-
clear matter phase: in the continuum limit, depending
on the chemical potential, it may evolve into a nuclear
liquid, a crystalline phase, a color superconductor, etc...
A first insight may be gained by considering O(β) cor-
rections to the β=0 phase diagram. At the same time,
we can also address an interesting quantitative issue: the
ratio Tc(µ=0)/µc(T =0) is about (160 MeV)/(300 MeV)
∼ 0.53 in nature, but about 1.402/0.75 ≈ 1.87 when
β=0. How does it vary with β ?

Corrections to the Strong Coupling Limit - To go be-
yond the strong coupling limit, a systematic expansion
of the QCD partition function in β is needed, which we
perform to first order O (β). Writing the β=0 partition
function as ZSC =

∫

dψdψ̄ZF , with ZF (ψ, ψ̄) =
∫

dUeSF

the fermionic partition function, the β ̸=0 partition func-
tion Eq. 1 becomes:

ZQCD =

∫

dψdψ̄dUeSF+SG =

∫

dψdψ̄ZF

〈

eSG

〉

ZF

,(6)

〈

eSG

〉

ZF

≃ 1+⟨SG⟩ZF
= 1+

β

2Nc

∑

P

〈

tr[UP + U †
P ]
〉

ZF

,(7)

where Eq. (7) is an O (β) truncation. We thus need the
expectation value of the elementary plaquette tr[UP ] in
the strong coupling ensemble ZF . The plaquette is com-
posed of 4 links representing gluons, which provide new
possibilities to make color singlets together with ψ̄xψx±µ̂

propagating fermions.
This gives rise (for Nc = 3) to 19 terms, which are

computed from the product P = JijJjkJklJli of the one-
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FIG. 6: Phase boundary in the µ−T plane in the strong cou-
pling limit and extrapolated to finite β, comparing linear and
exponential extrapolation. We do not observe a shift of the
chiral tricritical point. The nuclear critical endpoint (CEP),
determined from the reweighted baryon density, moves down
along the first order line (extrapolated to T = 0 to guide the
eye) as β is increased.
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FIG. 7: Reweighted baryon density nB for µ/T > µT /TT ≈
0.71, i.e. in the first-order regime. The nuclear transition
weakens as β is increased. At some βc it turns from first
order to second order, when the jump in the baryon density
vanishes. The larger µ/T , the stronger the first order tran-
sition, and the larger βc. Left: µ/T is close to the tricritical
point, βc ≈ 0.3. Right: µ/T is larger and βc ≈ 0.7.

(aµT , aTT ) = (0.65(2), 0.91(5)) could be detected; how-
ever, from the baryon density nB, see Fig. 7, we have
evidence that the critical endpoint of the nuclear transi-
tion, which coincides with the chiral transition at β = 0,
moves along the first order line, to smaller values of
T . This is expected: as β increases, the lattice spac-
ing a shrinks, and (aMB) also, where MB is the baryon
mass. If (aµc) stays approximately constant as we ob-
serve, then the nuclear attraction responsible for the dif-
ference (MB − 3µc(T = 0)), of about 300 MeV when
β = 0 [6], becomes weaker. The weakening of the as-

sociated first-order transition brings the nuclear critical
endpoint point down in temperature. We plan to study
O
(

β2
)

corrections next.

We would like to thank K. Miura and A. Ohnishi for
helpful discussions.
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Strong-coupling Hamiltonian from the Euclidean

Continuous Euclidean Time formulation gives rise to Hamiltonian (Unger et al., PoSLAT ’21, ’22, ’23,  Wolfgang’s talk)




 is that of  Heisenberg model, local Hilbert space has basis 








, where  have a reducible representation with 


• Things in common


• No gauge redundancy, Grassmann constraint and Gauss’ law respected implicitly


• Discrete set of variables, Hilbert space finite-dimensional (if large), baryons static


• Hamiltonian decomposes locally into baryonic “sectors” with baryon number , a structure inherited from the 


• block-diagonal structure <-> conserved quantities: e.g. local baryon number

→

𝒵CT (aT, aμB) = trℍ [e(−ℋ̂+�̂�aμB)/aT]
Nf = 1

ℋ̂ = −
1
2 ∑

⟨x,y⟩
( ̂J+

x
̂J−
y + ̂J−

x
̂J+
y ) spin −

Nc

2
|𝔥i⟩ ∈ {0, π, 2π, 3π, B+, B−}

�̂� = ∑
x

ω̂x

Nf = 2

ℋ̂ = −
1
2 ∑

⟨x,y⟩
∑

Qi∈{π+,π−,πU,πD}

̂J+
Qi,x

̂J−
Qi,y + ̂J−

Qi,x
̂J+
Qi,y

J±
Q d = 92

nB ∈ {−Nf , …, Nf} J′ s

3



Hamiltonian Evolution via Trotterization, Computational Basis: Qubits (1)

Use block-diagonal structure and reshape Hamiltonian locally

Observations:

Can label conserved charge sectors by states of ancilla bits which act as control bit

Static baryonic states have diagonal evolution

Resources involved ? (  2308.03196)

ℋ̂ = −
1
2 ∑

⟨x,y⟩

|0⟩⟨0 |x |0⟩⟨0 |y ( ̂J+
x

̂J−
y + ̂J−

x
̂J+
y ) + aμB ∑

x

|1⟩⟨1 |x ω̂x

→

4

H

H

H

H

H

H

H

H

0

1

2

3

0

1

2

3

0

1

2
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0

1

2

3

0
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3

0

1

2

3

4

q0 : S H

diag_famI

H S
:

q1 :

q2 : S H H S
:

q3 : ‚ S H H S
: ‚

q0 : RZ p´ �t
2
p

3
q RZ p´ �t

2
p
3

q

q1 : RZ p´ �t
2
p

3
q ‚ ‚

q2 : RZ p´ �t
2
p
3

q ‚ ‚

q3 : ‚ ‚ ‚ ‚

Figure 1. (Top) Four qubit quantum gate corresponding to the Fam1 unitary in the Mesonic Trotter step. (Bottom) The
diagonal gate diag_famI of the above unitary, decomposed into elementary operations.

takes the form

Fam1 “ {pIXqxpY Y qy, pIY qxpY Xqy ` x Ø y terms},
Fam2 “ {XXY Y,XY Y X, Y Y XX, Y XXY },

Fam3 “ {IXXX, IY XY,XXIX,XY IY },

Fam4 “ {Y Y Y Y, Y XY X, IXIX, IY IY,XXXX,XY XY },

(11)

where the big endian convention is used. The individual
terms are multiplied by the coefficients cpkq

j which are
listed in the Appendix (Eq. (A1)). Each of the Famk can
be diagonalized simultaneously using the tableau formal-
ism described in [23], yielding the sets

DiagFam1{2 “ {IIZZ, IZZZ,ZIIZ, ZZIZ},

DiagFam3 “ {IZZI, IZZZ,ZZII, ZZIZ},

DiagFam4 “ {ZZZZ,ZIZZ, IIIZ, IZIZ, IIZZ, IZZZ}.

(12)

The transformations Vk which diagonalize the families of
operators

exp

0

@i
X

j

cpkq
j P pkq

j

1

A “ Vk exp

0

@i
X

j

c̃pkq
j P̃ pkq

j

1

AV :
k(13)

are given below in gate form. The remaining step in
the derivation of the primitive gate sets for the He{o, is
the optimization of the exponentiated sum of diagonal
terms exp

⇣
i
P

j c̃
pkq
j P̃ pkq

j

⌘
. Here, optimization refers to

the number of CNOT gates. Making use of the iden-
tity Za b Zb “ CNOTa,bIa b ZbCNOTa,b and taking
into account mutual cancellations between neighboring
CNOTs, we arrive at the gate set for each of the four ex-
ponentiated families. As an example, the relevant gates
for the exponentiation of the first family are displayed
in Fig. 1 where the remaining sets are given in the Ap-
pendix, Fig. 6.

q0 :

q3 :

q1 :

MesonicTrotterp�tqq2 :

q4 :

q5 :

Figure 2. An example of the two-qubit controlled version
of the mesonic Trotter gate where the qubits pq0q1q2q and
pq3q4q5q have been arranged for readability.

B. Inclusion of Baryons

Extending our theory from gauge group Up3q to SUp3q
requires the extension of |hi “ |mi to |hi “ |m, bi, as
defined in Eq. (6). It is important to note that owing to
the limit of infinite gauge coupling and continuous time,
baryons remain static in our toy theory. Given an initial
state | 0i “ bx |hix, the time evolution of bosonic and
baryonic sites decouples as rH,N s “ 0, with baryons
evolving trivially, only leaving an imprint on the sur-
rounding “pion bath” through a fixed excluded volume.
From the practical side of quantum simulations this im-
plies that the gate set identified so far is sufficient to cap-
ture the dynamics of the theory with gauge group SUp3q
in the zero temperature limit.

At nonzero chemical potential or temperature, µB , T °
0 we will need to extend our register to three qubits
per site x to represent all six classical states of |hix “
p0,⇡, 2⇡, 3⇡, B`, B´qTx , leaving two states as redundancy.
As Hxe{o and Nx act on this Hilbert space through a
direct sum, we can use the three qubits in the regis-
ter pq0q1q2q and encode the hadronic sector (meson or
baryon) of hx in, say, q0, thus having it act as control
bit. A mesonic Trotter step thus consists of the gates
derived in the last section, Fig. 1 and Fig. 6, but in their
controlled version (e.g. on “0”), with one control bit per
site. The unitary exp

�´i�tHxe{o

�
acting on pairwise sets

of qubits encoding |hix and |hiy of nn-pairs hx, yi, respec-

5

q0 : ‚
q1 :

q2 : RZ p´2µBtq

Figure 3. Baryonic evolution gate for a single site. The
local control bits q0 and q1 encode the hadronic sector and
redundant state space, respectively.

tively, is hence represented by the symbolic circuit Fig. 2.
The baryon evolution happens in diagonal form per

site x (i.e. Z-term in the Hamiltonian) through the term
exp (´it

P
x !̂x) and hence does not need to be trotter-

ized. We thus only have to take into account local con-
trol by q0 (e.g. on “1”), which encodes the hadronic sec-
tor. Locally, to restrict the action of exp (´it!x) to the
pB`, B´qT part of |hix, we can add a control by q1, thus
excluding action on the redundant states of the 2

3 possi-
ble classical states. Fig. 3 thus shows the only baryonic
gate used in the time evolution of the full (SUp3q) theory.

C. Trotterized Time Evolution in d “ 1 ` 1

Trotterizing the time evolution according to

Uptq “
⇣
e´i�t

P
xe

Hxe e´i�t
P

xo
Hxo

⌘N
e`itN̂aµB ,(14)

where t “ �tN , Fig. 4 depicts the symbolic circuit corre-
sponding to the staggered layers of mesonic Trotter gates,
followed by a baryonic evolution for a lattice of dimen-
sion d “ 1 ` 1 with linear extent L “ 4, using open
boundary conditions for displaying purposes. The ini-
tial state chosen, | 0i “ p|`i |0i |`iqbL, corresponds lo-
cally to |hix “ 1

2 p1, 1, 0, 0, 1, 1qT , i.e. a superposition of
mesonic and baryonic occupation.

To exemplify the correctness of our gate decomposition
summarized in Fig. 4, we show in Fig. 5 a comparison of
exact and trotterized observables as a function of Trot-
ter time t, with initial state | 0i on a lattice of L “ 4

sites with p.b.c., using n “ 3L qubits. Displayed are
the results of a noise-free classical simulation, assuming

infinite shot statistics, resulting in the time-evolution of
expectation values of the mesonic observables Ĵ1{2 (left),
defined in Eq. (7) and the overlap | h 0| ptqi |2 (right) for
several values of the baryon chemical potential aµB . We
observe good agreement with the exact results.

IV. CONCLUSION AND OUTLOOK

In summary, we have mapped the Hamiltonian for
strong-coupling lattice QCD with one flavor of staggered
quarks to qubit degrees of freedom by writing down the
necessary complete gate set to simulate its dynamics
on a quantum computer. This formulation serves as a
preparatory step to actual studies of the model on quan-
tum hardware, where it is evident that this will not only
allow one to study the dynamics of the model but also its
thermal and finite density properties, using e.g. thermal
pure quantum states [24, 25] or the variational methods
described in [26] and [27].

Repeating this exercise for Nf ° 1 is another avenue
to pursue. Considering the state multiplicity diagram
given in [17], one sees that the the purely bosonic sector
of the theory (i.e. Up3q) will require the use of six qubits
per lattice site. This perhaps suggests that a mapping
of the system to an effective theory or the use of a qudit
formulation would be advantageous.

The most physically relevant extension of the current
work would be the inclusion of gauge corrections to the
Hamiltonian formulation. This would allow one to make
contact to other effective theories in the strong-coupling
limit [10], and in the longer term, approach the contin-
uum limit a Ñ 0.
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Hamiltonian Evolution via Trotterization, Computational Basis: Qubits (2)

• , now  Hamiltonian becomes

• Compared to , the …

•  are high dimensional ( , for )

• Higher qubit count for storage

• High gate depth already for single Trotter step

• Time evolution of baryonic sectors mix

Nf = 2 nBx
∈ {−2,…, 2}

ℋ̂ = −
1
2 ∑

⟨x,y⟩
∑
i,j

| i⟩⟨i |x | j⟩⟨j |y ∑
Qk

̂J(i)+
Qk,x

̂J( j)−
Qk,y

+ ̂J(i),−
Qk,x

̂J( j),+
Qk,y

Nf = 1

J(i)±
Qk,x

dmax = 50 nB = 0

| i⟩⟨i |x ⊗ | j⟩⟨j |y

5
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Hamiltonian Evolution via Trotterization, Computational Basis: Qubits (2)

• Just like the one-flavor case, time evolution factorizes into controlled unitaries

Diagonalization of 

•  can be , depending on baryonic sectors  at 

• Ressources ?  Techniques from quantum chemistry …

• Partition Pauli strings  into commuting sets (  such sets )

• Simultaneous diagonalization reduces gate depth

= ∏
ij

e i δt
2 |i⟩⟨i|x|j⟩⟨ j|y ∑Qk

̂J (i)+
Qk,x

̂J ( j)−
Qk,y+ ̂J (i),−

Qk,x
̂J ( j),+
Qk,y

≡ Uc,(0,0)Uc,(1,0)Uc,(0,1)Uc,(1,1)

∑
Qk

̂J(i)+
Qk,x

̂J( j)−
Qk,y

+ ̂J(i),−
Qk,x

̂J( j),+
Qk,y

=
Nij

∑
l

clPl

Nij 𝒪(106) (i, j) (x, y)

Pl nP
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Change Computational Basis: Qudits (1)

Intuitively computation with -level system promises less complexity…

 demonstrated with trapped ions (Ringerbauer, M. et al, Nat.Phys. 2022)

, local Hilbert space can be stored

Computationally it’s the Heisenberg model

where

,  with -dim. Pauli’s ,

Each  already elementary operation (Mølmer, K. and Sørensen, A., PRL 1999)

Can even do better (Low, P.J. et al., PRR 2020)… 

Generalized MS-gates: 2-qudit entangling gate with multiple transitions simultaneously

d

d ≤ 7

dNf=1 = 6

e−iδtHx,y ≈ e−iδtJ1
x ⊗J1

ye−iδtJ2
x ⊗J2

y ≈
9

∏
i=1

U𝒳𝒳i
U𝒴𝒴i

U𝒳𝒳 = e−iα𝒳x
kl⊗𝒳y

mn U𝒴𝒴 = e−iβ𝒴x
kl⊗𝒴y

mn d 𝒳 𝒴

U

e−iδtHx,y ≈ Ũ𝒳𝒳Ũ𝒴𝒴
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Change Computational Basis: Qudits (2)

 

rewriting with ancillary qudits …

Mixed qudit environment :

Qutrit controlling the baryonic sector 

Qudit with large  controlling the state

, feasible ?

137Ba+ trapped ion with up to  (Low, P.J. et al., arXiv:2306.03340)

dNf=2 = 92

ℋ̂ = −
1
2 ∑

⟨x,y⟩
∑
i,j

| i⟩⟨i |x

da= 3

| j⟩⟨j |y ∑
Qk

̂J(i)+
Qk,x

⏟
dB0

̂J( j)−
Qk,y

+ ̂J(i),−
Qk,x

̂J( j),+
Qk,y

d

d = 50

d = 25

8

(a)

(b)

493 nm

650 nm

1762 nm

614 nm

(c)

Figure 1. (a) Qudit encoding schemes for 137Ba+. Black texts indicate the encoding scheme employed in this work for 137Ba+.
All states with sufficiently strong (resulting in p-pulse transition fidelity of � 75%, discussed later in main text) allowed
transitions to the 5D5/2 level from |0i are encoded. Gray texts indicate a possible extension of the encoding scheme to up to 25
levels, where the additional states are chosen arbitrarily. (b) Illustration of the optical setup in this work. ~Be denotes the
magnetic field. See Extended Fig. E1 for detailed illustration of the setup. (c) The 137Ba+ energy level structure of the energy
levels relevant to this work. 493nm and 650nm lasers are used for laser cooling and fluorescent readout of the ion. Metastable
states in the 5D5/2 level are accessed from the 6S1/2 ground level with a 1762 nm laser. A 614 nm laser is used to reset the
experiments by pumping states out of the 5D5/2 level to the 6P3/2 level, which undergoes fast decay mostly to the ground level.

Energy Levels and Qudit Encoding
In a static non-zero magnetic field, 137Ba+ has 8 distinct stable energy states in the 6S1/2 level and 24 distinct metastable
energy states (with a lifetime of 35s21) in the 5D5/2 level (see Fig. 1a). The lifetime of the 5D5/2 metastable states is orders of
magnitude larger than a typical quantum operation time scale1, 13, so this abundance of stable or metastable states in 137Ba+

makes it an excellent candidate for high-dimensional qudit encoding.
The measurement procedures used in this article allow 25 of the 32 states in the 6S1/2 and 5D5/2 levels to be distinguishable

in a single shot (discussed in next sections), thus allowing qudit encodings of up to 25 levels in principle. In this work, we encode
computational states in the |6S1/2,F = 2,mF = 2i state and the subset of 5D5/2 states accessible from the |6S1/2,F = 2,mF = 2i
state using quadrupole-allowed 1762 nm transitions. We exclude 5D5/2 states with p-pulse transition fidelities of  75% (see
Supplementary Information), resulting in a 13-level encoding, illustrated in Fig. 1a.

Fig. 1b illustrates the setup used in this work for optical control of the 137Ba+ energy levels (see Methods and Extended Fig.
E1 for more details). To attain sufficient experimental controls to perform SPAM, other energy levels in 137Ba+ are utilized.
The relevant energy levels and their corresponding laser frequencies for control are summarized in Fig. 1c.

Note that we have labelled the states using F̃ and m
F̃

notations in Fig. 1a, which we define as the energy eigenstates of the
ion in a general magnetic field strength, Be. Each |F̃ ,m

F̃
i state approaches the corresponding |F,mFi state at low magnetic

field strengths, i.e. |F̃ ,m
F̃
i ⇡ |F,mFi as Be ! 0. This distinction is necessary as the hyperfine energy level splitting between

the F = 3 and F = 4 states in the 5D5/2 level is small, at 486kHz22, and the linear Zeeman approximation does not hold for
typical values of Be, as indicated by the strong overlap between F = 3 and F = 4 energies in Fig. 2a. Fig. 2b illustrates this
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Change Computational Basis: Qumodes

Digitization with qumodes

• Local state  encoded in vibrational modes / photon occupation number , , 
, tailored to encode continuous variables (see e.g. Jha, R.G., PRA 2024  

model)

• Discrete model ? - model encodes information in angular momentum states  
Jordan-Schwinger-map (Schwinger 1952)

 

i.e. two qumodes per site  with local constraint 

• Challenge: Gate set 

• Hamiltonian involves quartic interaction 

• Non-Gaussian quartic gate  needs to be decomposed  expensive

|𝔥x⟩ |n⟩x ̂nx = a†
x ax

(a, a†) ↔ ( ̂x, ̂p) O(3)

Nf = 1 →

̂J+
x = ̂a†

1,x ̂a2,x, ̂J−
x = ̂a†

2,x ̂a1,x

x n1 + n2 = 2j = Nc

{eis ̂xk, eis ̂a†
k ̂ak, eis ̂x2

k, eis ̂x3
k, eis ̂xk ̂xj} ≡ {Z(s), R(s), P(s), V(s), CZ(s)}

∼ ̂x1,x ̂x2,x ̂x1,y ̂x2,y

Q(s) = eis ̂x4
k →

9



Summary and Conclusion

10

8

pi, jq when compared to the qubit case. After partial re-
summation of the Xmlnl and Ymlnl in Eq.(31) we obtain

J
1,piq
Qk

“
NiX

n

↵
pi,kq
n

A
pi,kq
n

, J
2,piq
Qk

“
NiX

n

�
pi,kq
n

B
pi,kq
n

, (32)

where the An and Bn represent linear combinations (c.f.
Eq.(11)) of the X and Y, respectively. One mesonic Trot-
ter step would hence involve the unitaries

e
´i�tHx,y «

Y

i,j

|iihi|x|jihj|y ˆ
Y

k,n,m

e
´i�t↵

pi,kq
n ↵

pj,kq
m A

pi,kq
n bA

pj,kq
m e

´i�t�
pi,kq
n �

pj,kq
m B

pi,kq
n bB

pj,kq
m .

Considering that, in the |B|=1 sector, there are 20 tran-
sitions per pion current Qk, this suggests N1 = 5 gen-
eralized MS gates à 4 transitions. Employing the same
principle for B “ 0, yields N0 “ 7 generalized MS gates
to encode 28 transitions, c.f. Fig.1. In Table II we sum-
marize the arising gate count in terms of generalized MS-
gates for fixed combination of baryonic sectors pi, jq and
fixed pion current Qk.

Baryon Sector 0 1
0 7 ˆ 7 ˆ 2 7 ˆ 5 ˆ 2
1 7 ˆ 5 ˆ 2 5 ˆ 5 ˆ 2

Table II. Estimated count of generalized MS gates for the
baryon sector combination pi, jq per pion current Qk. We
assumed that the 28 transitions in the B “ 0 sector can be
partitioned into 7 gates à 4 transitions. By analogy for |B| “
1, we decompose the 20 transitions into 5 gates.

To complete the estimate for time evolving the two-flavor
theory with trapped-ion qudits, we note on the side that
the diagonal, local terms N̂B and N̂I in Eq.(5) can be
treated as in the one-flavor case: If we decompose N̂B “P

x,i
|iihi| b !x,i, where !x,0 “ 050ˆ50, !x,1 “ ´I20ˆ20 ‘

I20ˆ20 ‘ 010ˆ10 “ ´P19
i“0 Zi,20`i and !x,2 “ ´2Z0,1,

the gate decomposition in terms of diagonal single qudit
rotations becomes visible, where a similar decomposition
holds for N̂I .

3. Mapping to qumodes

In view of the 92-dimensional state space of the two-flavor
theory (see Sect.II), mapping the theory to qumode de-
grees of freedom with a theoretically infinite dimensional
Hilbert space appears promising. In fact, one could be
tempted to simply generalize the relation Eq.(19) ob-
tained for Nf “ 1 by defining Ĵ

piq`
Qk,x

“ a
:pi,kq
1,x â

pi,kq
2,x to

arrive at

H „
X

hx,yi

X

i,j

|iihi|x|jihj|y
X

Qk

⇣
â

:pi,kq
1,x â

pi,kq
2,x â

:pj,kq
2,y â

pj,kq
1,y ` h.c.

⌘
.

Table III. Storage requirement for lattice volume N

Information Carrier Nf “ 1 Nf “ 2

Qubit 3N p3 ` 6qN*

Qudit pd ° 2q N N ` N**

Qumode 2N ` N** ° 2N

* We used unary encoding of the three ancilla
states representing the baryon sectors |B|.
** With mixed architecture, i.e. either mixed-
qudit or qubit-qumode.

Table IV. Entangling gate count for one mesonic nn-Trotter
step

Information Carrier Nf “ 1 Nf “ 2

Qubit Op10q Op106q
Qudit pd ° 2q 2 Op102q

Qumode Op102q ´ Op103q* –

* Depending on the availability of the quartic gate.

However, this expression does not reproduce the correct
matrix elements. Contrary to the one-flavor case, where
the J

`{´ simply fulfilled the algebra of a spin-Nc{2 rep-
resentation (c.f. Sect.II), the Ĵ

piq`
Qk,x

in the Nf “ 2-theory
are reducible and decompose into product representa-
tions whose structure still has to be determined [20, 21].
It is conceivable that the Jordan-Schwinger-map for the
theory with Nf “ 2 requires several qumode operators
a
k

i
per pion current Qk and – following the discussion

in Sect.III A 3 – is likely to be expensive in terms of the
number of gates which concludes our discussion for the
two-flavor case.

IV. CONCLUSION AND OUTLOOK

We summarize the relevant information on the resource
requirement for the digitization of strong coupling lat-
tice QCD with Nf “ 1 and Nf “ 2 flavors of staggered
quarks in Table III and Table IV. As qudits with d ° 2
offer the possibility to represent a multidimensional (lo-
cal) state space, their resource requirements in terms of
storage are favorable when compared to 2-level systems
and qumodes. For the latter it should be noted that
the scaling of course depends on the particular mapping
chosen to encode the local, discrete state space of our
models (angular momentum states) in the Fock-states of
quantum harmonic oscillators, where we used the Jordan-
Schwinger-map. For continuous variables, a different en-
coding may result in a more efficient scaling, as is the case
for the non-linear sigma model [42, 43]. The entangling
gate count in the qumode case (Table IV) shows that the
availability of non-Gaussian gates (in particular the quar-
tic gate) has a high impact on the scaling. It remains to
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pi, jq when compared to the qubit case. After partial re-
summation of the Xmlnl and Ymlnl in Eq.(31) we obtain

J
1,piq
Qk

“
NiX

n
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pi,kq
n

A
pi,kq
n

, J
2,piq
Qk

“
NiX

n

�
pi,kq
n

B
pi,kq
n

, (32)

where the An and Bn represent linear combinations (c.f.
Eq.(11)) of the X and Y, respectively. One mesonic Trot-
ter step would hence involve the unitaries

e
´i�tHx,y «

Y

i,j

|iihi|x|jihj|y ˆ
Y

k,n,m

e
´i�t↵

pi,kq
n ↵

pj,kq
m A

pi,kq
n bA

pj,kq
m e

´i�t�
pi,kq
n �

pj,kq
m B

pi,kq
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Considering that, in the |B|=1 sector, there are 20 tran-
sitions per pion current Qk, this suggests N1 = 5 gen-
eralized MS gates à 4 transitions. Employing the same
principle for B “ 0, yields N0 “ 7 generalized MS gates
to encode 28 transitions, c.f. Fig.1. In Table II we sum-
marize the arising gate count in terms of generalized MS-
gates for fixed combination of baryonic sectors pi, jq and
fixed pion current Qk.

Baryon Sector 0 1
0 7 ˆ 7 ˆ 2 7 ˆ 5 ˆ 2
1 7 ˆ 5 ˆ 2 5 ˆ 5 ˆ 2

Table II. Estimated count of generalized MS gates for the
baryon sector combination pi, jq per pion current Qk. We
assumed that the 28 transitions in the B “ 0 sector can be
partitioned into 7 gates à 4 transitions. By analogy for |B| “
1, we decompose the 20 transitions into 5 gates.

To complete the estimate for time evolving the two-flavor
theory with trapped-ion qudits, we note on the side that
the diagonal, local terms N̂B and N̂I in Eq.(5) can be
treated as in the one-flavor case: If we decompose N̂B “P

x,i
|iihi| b !x,i, where !x,0 “ 050ˆ50, !x,1 “ ´I20ˆ20 ‘

I20ˆ20 ‘ 010ˆ10 “ ´P19
i“0 Zi,20`i and !x,2 “ ´2Z0,1,

the gate decomposition in terms of diagonal single qudit
rotations becomes visible, where a similar decomposition
holds for N̂I .

3. Mapping to qumodes

In view of the 92-dimensional state space of the two-flavor
theory (see Sect.II), mapping the theory to qumode de-
grees of freedom with a theoretically infinite dimensional
Hilbert space appears promising. In fact, one could be
tempted to simply generalize the relation Eq.(19) ob-
tained for Nf “ 1 by defining Ĵ

piq`
Qk,x

“ a
:pi,kq
1,x â

pi,kq
2,x to

arrive at

H „
X

hx,yi

X

i,j

|iihi|x|jihj|y
X

Qk

⇣
â

:pi,kq
1,x â

pi,kq
2,x â

:pj,kq
2,y â

pj,kq
1,y ` h.c.

⌘
.

Table III. Storage requirement for lattice volume N

Information Carrier Nf “ 1 Nf “ 2

Qubit 3N p3 ` 6qN*

Qudit pd ° 2q N N ` N**

Qumode 2N ` N** ° 2N

* We used unary encoding of the three ancilla
states representing the baryon sectors |B|.
** With mixed architecture, i.e. either mixed-
qudit or qubit-qumode.

Table IV. Entangling gate count for one mesonic nn-Trotter
step

Information Carrier Nf “ 1 Nf “ 2

Qubit Op10q Op106q
Qudit pd ° 2q 2 Op102q

Qumode Op102q ´ Op103q* –

* Depending on the availability of the quartic gate.

However, this expression does not reproduce the correct
matrix elements. Contrary to the one-flavor case, where
the J

`{´ simply fulfilled the algebra of a spin-Nc{2 rep-
resentation (c.f. Sect.II), the Ĵ

piq`
Qk,x

in the Nf “ 2-theory
are reducible and decompose into product representa-
tions whose structure still has to be determined [20, 21].
It is conceivable that the Jordan-Schwinger-map for the
theory with Nf “ 2 requires several qumode operators
a
k

i
per pion current Qk and – following the discussion

in Sect.III A 3 – is likely to be expensive in terms of the
number of gates which concludes our discussion for the
two-flavor case.

IV. CONCLUSION AND OUTLOOK

We summarize the relevant information on the resource
requirement for the digitization of strong coupling lat-
tice QCD with Nf “ 1 and Nf “ 2 flavors of staggered
quarks in Table III and Table IV. As qudits with d ° 2
offer the possibility to represent a multidimensional (lo-
cal) state space, their resource requirements in terms of
storage are favorable when compared to 2-level systems
and qumodes. For the latter it should be noted that
the scaling of course depends on the particular mapping
chosen to encode the local, discrete state space of our
models (angular momentum states) in the Fock-states of
quantum harmonic oscillators, where we used the Jordan-
Schwinger-map. For continuous variables, a different en-
coding may result in a more efficient scaling, as is the case
for the non-linear sigma model [42, 43]. The entangling
gate count in the qumode case (Table IV) shows that the
availability of non-Gaussian gates (in particular the quar-
tic gate) has a high impact on the scaling. It remains to
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