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Abstract

We will present latest results on the gradient flow of our Weinberg three-gluon
operator and its mixing with the topological term. This will allow us to combine our
calculation of neutron electric dipole moments (nEDM) due to the lattice Weinberg
operator with our previous results on the nEDM due to the topological term to
constrain beyond-the-standard model contributions to the Weinberg operator.
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Motivation
BSM physics exists: we need to find it

Two incompatible ‘standard models’:

Standard Model of Particle Physics X Standard Model of Cosmology

• Universe has gravity, is too big and too old.
• Universe too isotropic, homogeneous: Needs high-pressure ‘dark energy’
• Universe too clumpy: Needs particulate ‘dark matter’
• Has too much matter: Needs baryogenesis that needs ‘CP violation’

Of these, CP-violation touches most particle physics.
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Motivation
EDMs clean BSM signals

Electric Dipole Moments of non-degenerate systems prohibited by CP symmetry.
CP-violation effecting baryogenesis now within experimental reach:

electron 4.1 × 10−30e · cm
neutron 1.8 × 10−26e · cm
proton 2.1 × 10−25e · cm

Improvements by a factor of 2–3 orders of magnitude may be within reach.
Standard model contribution about a million times smaller!
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Motivation
Low-dimension CP violating operators

• Dimension-3 or 4
– CP-violating lepton mass
– CP-violating quark mass = Theta-term

• Dimension-5
– Lepton electric dipole moment
– Quark electric dipole moment
– Quark chromo-electric dipole moment

• Dimension-6
– Four-lepton operators
– Lepton-quark operators
– Four-quark operators
– CP-violating three-gluon Weinberg

operator
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• A single detectable EDM would prove
BSM.

• Need multiple EDM measurements to
probe BSM.
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Power divergence
Effective Field Theory: Separation of scales
Higher-dimensional operators strongly scheme dependent.
In EFT approach, we integrate out degrees heavier than the BSM scale.

BSM MatrixElement = WilsonCoeff1 × MatrixElement(O1) +
WilsonCoeff2
BSM scalen × MatrixElement(O2) + . . .

Wilson coefficients are a function of αs(BSM scale). Usually calculated perturbatively.

Ambiguous up to non-perturbative effects like

exp(−n/2β0α2
s(BSM scale)) ∼ (ΛQCD/BSM scale)n

Ambiguity absorbed in redefining O2 − MixingCoeff21Λn
QCD O1, etc.
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Power divergence
Nonperturbative definition: renormalization scheme

Usual tradeoff between Wilson Coefficients and Operator Renormalization.

MatrixElement(O2) is power-divergent.
Divergence proportional to MatrixElement(CutoffnO1).
Put a condition on MatrixElement(O2); this fixes coefficient of CutoffnO1.
But: want MatrixElement(O2)/MatrixElement(O1) ∼ Λn

QCD, but (ΛQCD/Cutoff)n is a
nonperturbatively small change.
For example, for Cutoff ∼ 3GeV, αs ≈ 0.5, (ΛQCD/Cutoff)2 ≈ 0.01.

So, calculating O2 is usually not useful, unless either
• O1 matrix element and Wilson coefficients known very accurately, or
• Lower-dimension operator has a suppressed matrix-element.
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Power divergence
Gradient Flow scheme

In Gradient Flow Renormalization Scheme, there is a ‘hard’ cutoff τgf =
√

8tgf a.

∂U(tgf)
∂tgf

= ∇S[U(tgf)] · U(tgf)

with a → 0 holding τgf ̸= 0 fixed.

The scheme has
• Good chiral symmetry when τgf ̸= 0.
• No renormalization for composite operators.
• Only one multiplicative ‘wavefunction renormalization’ for fermions
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Gluonic CP Violation
Weinberg and topological charge

Two gluonic CP-violating operators up to dimension 6: topological charge, G · G, and
Weinberg, G · G̃ · G, operators.

With good chiral symmetry and massless quarks, gradient flow and MS schemes
related as: G · G̃

G · G̃ · G
· · ·


MS

=

 ZTop 0 0
ZMixed

1
(τgfa)2 ZWein O((τgfa)2)

O( 1
(τgfa)4 ) O( 1

(τgfa)2 ) · · ·


 G · G̃

G · G̃ · G
· · ·


gf
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Gluonic CP Violation
Susceptibilities: Weinberg, Topological and Mixed

Susceptibility is the quadratic coefficient in the effective action:

χTop = ∂2 ln Z/∂Θ2

Variance of the topological charge: χTop = ⟨Q2⟩ − ⟨Q⟩2, where Q =
∫

d4xG · G̃.
Important quantities in theories with Peccei-Quinn symmetry:
Θinduced = −w(χMixed/χTop)
Under gradient flow,
• Topological charge becomes an integer.
• Topological charge distribution almost stabilizes.
• Finite volume effects makes the topological charge distribution ‘flow’.
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Gluonic CP Violation
Charge Distribution Under Gradient Flow

Q
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Gluonic CP Violation
Topological susceptibility and quark mass

Topological charge is topological (though
takes long flow!)
Does not mix with Weinberg.
Fermion determinant suppresses topol-
ogy.

1
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≈ 1
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+ 4
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πF 2
π

(
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π
3M2

η

)
So, Weinberg has no power-divergence
(as small flow-time) in the chiral limit. No
reason to suspect large chiral corrections.
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Lattice Data and Fits
Lattice Setup and Parameters

Tadpole-improved clover fermions; errors O(αsa) and O(a2).

Name a (fm) Mπ (MeV) MK (MeV) L3 × T
C13 0.127(2) 285(5) 476(5) 323 × 96
D220 0.094(1) 214(3) 543(6) 483 × 128
D5L 0.094(1) 268(3) 512(5) 483 × 96
D6 0.0914(9) 175(2) 643 × 128
D7 0.091(1) 170(2) 491(5) 643 × 128
E5 0.0728(8) 272(3) 575(6) 483 × 128
E6 0.0707(8) 223(3) 539(6) 643 × 192
E7 0.0706(7)3 167(2) 538(6) 723 × 192
E9 0.0700(7) 128(2) 521(5) 963 × 192
F5 0.056(1) 280(5) 526(6) 643 × 192
F5 0.0555(6) 216(2) 527(5) 723 × 192
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Lattice Data and Fits
Chiral-Continuum-Finite-Volume extrapolation: strategy

Fit form:
χ1/n = s0(tgf) + s1(tgf)ap + s2(tgf)M2

π

where
• n chosen to get dimensions of MeV.
• Gradient-flow-time dependence modeled as a spline.
• Linear extrapolation in a (or a2) and M2

π

• Neglect dependence on M2
K and finite volume.

• Neglect cross-term between a and quark-mass.
• Number of knots and knot positions chosen (globally) using AIC.
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Lattice Data and Fits
Fit results
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• Uncorrelated fits.
• Omit very small τgf .
• All the fits have reasonable quality by

eye.
• Fit doesn’t constrain χ = 0 at chiral

limit for Q.
• Fit doesn’t go through χ = 0 at chiral

limit for Q.
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Lattice Data and Fits
Study of mixing
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At Mπ = 140 MeV, a = 0:
• Topological susceptibility (71MeV)4

close to previous determination.
• Weinberg shows a large t

dependence, Mixed does not.
• Related to nonzero Q at chiral limit?
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Future
Ongoing Calculation: extraction of nEDM

• Topological charge behaves nicely:
– Is an integer.
– Is zero in the chiral limit.

• Since gradient-flow is chirally improved, in the chiral limit:
– Weinberg can only have ‘divergent’ mixing with topological charge
– Topological charge can be rotated away in the chiral limit.
– Weinberg operator ‘safe’ in the chiral theory.

• Numerical extrapolations see residual effects.
– Problems with lowest order fits?

• Will un-flowed vector current spoil the picture?
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