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4 ExaFLOPs of HPC Performance Driving Scientific Innovation

Next-Gen Supercomputing Datacenter

1.7 Exaflops Grace Hopper
Coming online 2024
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How much of your WORKLOAD is 
running on GPUs?



Application on Accelerated Systems
Fully GPU Accelerated

• Compute almost fully on the GPU with data in GPU memory

• Little to no limitation from CPU and data transfers

GPU

CPU

Data transfer



Application on Accelerated Systems
Partially GPU Accelerated

• As GPUs become faster applications become increasingly limited by non-GPU factors, e.g.

• mostly data transfer (PCIe) limited

• mostly CPU limited

GPU

CPU

GPU

CPU
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NVIDIA Grace Hopper Superchip
“super” - more than a “chip”

NVIDIA CPU + NVIDIA GPU w/o compromises



NVIDIA Grace Hopper Superchip

• NVIDIA Grace CPU

• 72 Arm-v9 Neoverse V2 CPU cores with SVE2.

→ Throughput: 3.6 TFLOP/s 

• Memory:

→High capacity: ≤ 480 GB LPDDR5X 

→High System Memory bandwidth: ≤ 500 GB/s

“super” - more than a “chip”

NVIDIA CPU + NVIDIA GPU w/o compromises



NVIDIA Grace Hopper Superchip

• NVIDIA Grace CPU

• 72 Arm-v9 Neoverse V2 CPU cores with SVE2.

→ Throughput: 3.6 TFLOP/s 

• Memory:

→High capacity: ≤ 480 GB LPDDR5X 

→High System Memory bandwidth: ≤ 500 GB/s

• NVIDIA Hopper GPU 

→High throughput: 60 TFLOP/s

• Memory:

→ Capacity: 96 GB HBM3 / 144 GB HBM3e

→ Extreme bandwidth ≤ 4000 GB/s  / 5000 GB/s

• ≤ 18x NVLink 4 → 900 GB/s

→ Threads are threads

“super” - more than a “chip”

NVIDIA CPU + NVIDIA GPU w/o compromises



NVIDIA Grace Hopper Superchip

• Memory consistency: ease of use

→All threads – GPU and CPU – access system memory:
C++ new, malloc, mmap’ed files, atomics, …

→ Fast automatic page migrations

→ Threads cache peer memory → Less migrations

• High-bandwidth: 900 GB/s (same as peer NVLink 4)

→ GPU reads or writes local/peer LPDDR5X at ~peak BW

• Low-latency: GPU→HBM latency

→GPU reads or writes LPDDR5X at ~HBM3 latency

For all threads in the system
memory tastes like memory 

expected behavior + latency + bandwidth.

Soul is the new NVLink-C2C CPU → GPU interconnect

NVLink–C2C



Hopper Architecture
H100 GPU Key features

132 SMs

4th Gen Tensor Core

Larger 60 MB L2

4th Gen NVLink

900 GB/s total bandwidth

2nd Gen Multi-Instance GPU

Confidential Computing

PCIe Gen5

Thread Block Clusters

96GB HBM3, 4 TB/s 

bandwidth



NVIDIA GRACE CPU
NVIDIA Scalable Coherency Fabric and distributed cache design

• 72 Arm Neoverse V2 Cores

• 4x128b SVE2 SIMD units per core

• Single Die: single NUMA

• 3.16 Ghz Base Clock

• 2.7 GHz Vector Clock

• 3,225.6 GB/s Bisection Bandwidth

• Scalable Coherency Fabric: Shared, uniform 117MB 

of L3 cache for entire chip.

• LPDDR5x: up to 500GB/s memory bandwidth.

Local caching of remote die memory.

Example possible fabric topology for illustrative purposes



Grace Memory Subsystem

• Separate L1 data and instruction caches per core

• L1 instruction memory system

• 64KB, 4-way set associative, 64B cache line

• L1 data memory system

• 64KB, 4-way set associative, 64B cache line

• Private, unified data and instruction L2 cache per core

• 1MB , 8-way set associative

• Scalable Coherency Fabric:
Shared, uniform 117MB of L3 cache for entire chip.

• LPDDR5x: up to 500GB/s memory bandwidth

• 120GB / 240GB capacity: 500 GB/s

• 480GB capacity: 375 GB/s
 

Per 72C Grace SoC

0

50

100

150

200

250

300

350

400

450

500

0 8 16 24 32 40 48 56 64

B
an

d
w

id
th

 (
G

B
/s

)

Threads

Grace stream triad



Widening the bottlenecks
How much do transfer and system memory bandwidth limit your application?
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This takes into account the CPU:GPU ratio in this systems. For SPR + H100 we assume a 
2:1 ratio as common in x86 based GPU nodes used in HPC, same as Juwels Booster..

Assumes a typical CPU used in the timeframe.



Developer Velocity with Grace Hopper
Accelerating the path to accelerated computing

x86+H100

Grace Hopper

Engineering Effort & Time

Incremental acceleration.

PCIe bottlenecks is demotivating to developers

Incremental acceleration. 

C2C is encouraging

Significant effort required to 

approach break-even

Using the right chip for 

the right purpose 

Productivity 
acceleration

P
e
rf

o
rm

a
n
c
e

CPU Only



Shifting the break-even point
Further lowering the barrier to GPU acceleration with C2C

Transfer time C2C Time to process on GH

0 1 2 3 4 5 6 7 8 9 10

Transfer time PCIe Time to process on H100 80GB

0

0.015

0.03

0.045

0.06

Time to process on x86 Time to process on Grace• Assume a memory-bandwidth bound 
workload

• Idealized: time ~ data size / bandwidth

• Process 3+x GB of data on the CPU

• For GPU processing

• Transfer 3 GB from / to GPU

• Process 3+x GB of data on the GPU



Getting ready for Grace-Hopper
Recompile and Run

• Currently existing applications do not need to be changed

• Recompile the application for ARM Neoverse-V2 (Grace) and sm_90 (Hopper)*

• Benefit from more bandwidth everywhere

• Accelerate existing applications

• Easier to port than ever

• Large selection of programming models and language available

• Hardware coherency

• Obtain overall speedup even for partially ported applications with the Grace CPU and C2C 

• Large selection of tools (NVIDIA tools and 3rd party) available

• Balanced architecture results in fewer Amdahl’s limiters

Grace can run any ARMv8 binaries and the usual CUDA compatibility 



Application on Accelerated Systems
Coherently GPU Accelerated

• Exploit GPU / CPU coherency

• Use all available system features

• not necessarily clean distinction between phases

GPU

CPU

Data transfer
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Global Access to All Data
Cache-coherent access via NVLink C2C from either processor to either physical memory

Grace directly reading Hopper’s memory

CPU fetches GPU data into CPU L3 cache
Cache remains coherent with GPU memory

Changes to GPU memory evict cache line

Hopper directly reading Grace’s memory

GPU loads CPU data via CPU L3 cache
CPU and GPU can both hit on cached data

Changes to CPU memory update cache line
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Grace Hopper
Address Translation Service (ATS) enables full access to all CPU & GPU allocations

Migrations are not required: Fewer Migrations
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ATS creates a single page table for the whole system
NVLink C2C allows access to all physical memory without migration



High Bandwidth Memory Access & Automatic Data Migration
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The system can automatically migrate
both managed and CPU-allocated memory

in order to optimize access speed
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High Bandwidth Memory Access & Automatic Data Migration
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ATS shared page table means that both CPU and GPU
automatically access X in its new location after migration
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SINGLE GPU PERFORMANCE
QUDA Wilson Dslash Kernel
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Code from 2008 runs unchanged*
(rewritten in 2019 - same perf better 

maintainability)

Wilson Dslash, single precision



Grid CPU performance
Dirac Operator (Benchmark_ITT)

NVIDIA Grace Superchip vs  x86 (AMD Epyc 9654 and Intel Xeon 8480+).

Grid development version as of July 2023 with GCC 12, results measured in July 2023



MILC RHMD Benchmark

• GPU offload acceleration through QUDA with partial GPU data residency

• QUDA accelerated solvers

• Mixed-precision multishift inverter

• Gauge force

• Fermion force

• NERSC Medium benchmark

• Performance on Grace-Hopper ensures 2x scaling over x86 +A100

• C2C drastically reduces data-transfer time

• Grace CPU memory bandwidth accelerates remaining CPU parts

• Both combined restore scaling between generations

Fully accelerated using QUDA

0.

0.5

1.

1.5

2.

2.5

NERSC Medium

Grace Hopper Performance

x86 + A100 x86 + H100 Grace Hopper

1 node with 4 GPUs
A100 runs were done using AMD EPYC (Rome) CPUs.
H100 runs were done using Intel Xeon (SPR) CPUs.



MILC
Breakdown
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A100 runs were done using AMD EPYC (Rome) CPUs.
H100 runs were done using Intel Xeon (SPR) CPUs.
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Backfill free CPU resources 
Run highly demanding phase on GPU and overlap another with another phase on the CPU

• Accelerated jobs mostly uses the GPU and only fraction of CPU

• Backfill idle CPU resources

GPU

CPU

Data transfer



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Chroma HMC + Grid Dslash
Co-scheduled on a 4 GH node

• Chroma HMC with QUDA + QDPJIT

• Fully device resident

• Requires just a single core to drive GPU

• Grid Dirac Wilson benchmark Proxy to simulate running a CPU 
heavy workload

• Analysis job, …?

• Can use 64 cores per Grace CPU

• Combine both to fully exploit the node

• Performance impact ~ 5%

• More throughput

• Increase energy efficiency

• Additional CPU job just consumes increase in CPU power

• System socket power in consumed anyway



Examples from other domains



ICON Coupled Ocean

• ICON is a unified next-generation global numerical weather prediction and 
climate modelling framework

• Developed by DWD (German weather prediction center), MPI-M (German 
Max Planck climate research institute) and MeteoSwiss with help from CSCS

• Currently used for operational forecast at DWD, soon to be in production in 
Switzerland on GPUs. Used by many institutes for climate simulations

• Typical scales from 1 to 1000s GPUs

• Atmospheric simulation is fully GPU-ported with OpenACC. Ocean part is 
not fully ported yet and can only be run on the CPU

• Coupled atmosphere-ocean simulations are very important for 
understanding long-term climate change and multiple institutions are 
currently working on such setups



ICON Coupled Ocean
Profile

• Full globe coupled simulation at 10 km atmosphere resolution and 5 km ocean resolution. 90 vertical atmosphere layers, 72 vertical ocean 
layers. Atmosphere time-step is 90s, ocean time-step is 5 min and coupling time-step is 15 min. Atmosphere and ocean run in different 
ranks within the same MPI job. 64 GPUs and 512 (Eos) or 3008 (Alps) CPU ranks

Waiting 
for CPU & 

comms

Profiling 
atmosphere 
GPU process

Eos

Alps

GPU 
part

GPU 
part Comms 

with CPU 
12x faster

GPU 
part

GPU 
part

Ocean running overlapped on CPU

Ocean running overlapped on CPU



ICON Coupled Ocean
Grace-Hopper:  3x speedup

• On EOS:

• Performance limited by Ocean running on 
the CPU

• On Alps:

• Unleash full performance of Hopper GPUs

• Grace is powerful enough to run the ocean 
in the background

• Alps network is still in bring-up phase, 
which introduces some atmosphere-only 
and coupling overhead

• 3x end-to-end performance
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preliminary result from March 2023 (Alps system bring-up)



NEMO Ocean Model
A partially accelerated case utilizing unified memory on Grace-Hopper

• Setup ( NEMO v4.2.0 )

• GYRE_PISCES benchmark

• Scaling factor for grid resolution: nn_GYRE = 25

• ~ORCA ½ grid

• ~80 GB RAM, fits on single GPU

• MPI-only, single core to every MPI process for CPU runs

• Incremental porting on Grace-Hopper (480GB) using unified memory and 
access-counter based migrations

• Memory management left to runtime – system-allocated memory with 
automatic migrations

• compile with –gpu=unified,nomanaged

• Simply offloading loops to GPU using OpenACC, in 3 steps:

• Horizontal (lateral) diffusion,

• Advection,

• Vertical diffusion and time-filtering,

for both “active” (TRA) and “passive” (TRC) tracer transport
Image source:

NEMO User Guide — NEMO release-4.2.2 
documentation (nemo-ocean.io)

The "Nucleus for European Modelling of the Ocean" (NEMO) 
is a state-of-the-art modelling framework, used for research 

activities and forecasting services in ocean and climate 
sciences.

https://sites.nemo-ocean.io/user-guide/
https://sites.nemo-ocean.io/user-guide/


Porting NEMO to Grace-Hopper using Unified Memory
Incremental porting, zooming in to a single timestep …

Full timestep on Grace CPU

“Passive” tracer transport (TRC) “Active” tracer transport (TRA)



Porting NEMO to Grace-Hopper using Unified Memory
Incremental porting, zooming in to a single timestep …

Full timestep on Grace CPU

Timestep on Grace-Hopper (step 1)

Timestep on Grace-Hopper (step 2)

Timestep on Grace-Hopper (step 3)

1.3x

1.65x

1.92x

We run multiple (i.e. 40) MPI 
processes on CPU and GPU 

using MPS, and use 
“migratable” system 

allocated memory

Ported to GPU:
• Horizontal diffusion
• Advection
• Vertical diffusion and 

time-filtering

2.4x 1.9x

2.8x 2.5x

5.2x 4.5x



Porting NEMO to Grace-Hopper using Unified Memory
A deeper look into the effect of access-counter based migrations on the partially accelerated port

Timestep on Grace-Hopper with access-counter migrations DISABLED

Timestep on Grace-Hopper with access-counter migrations ENABLED

Timestep on Grace CPU

1.33x

1.44x

Tracer transport on GPU with 
migrations disabled 

( buffers with first-touch on CPU will 
never migrate to GPU memory )

Enabling automatic page 
migrations from CPU to GPU
( “hot” pages migrate to GPU )

0.656 ms 1.376 ms

0.580 ms 0.945 ms

0.591 ms 0.468 ms

CPU only run

1.46x

2.02x

CPU parts sustain performance even when certain 
pages have migrated to GPU memory, as long as we 

use enough processes to saturate C2C BW

GPU kernels pull data first-touched by CPU 
directly from CPU memory

GPU kernels become faster as more and more 
pages migrate to GPU



Science with Grace Hopper

• Balanced platform with 

• Hopper GPU

• Grace CPU

• C2C Interconnect (High Bandwidth)

• Unified Memory Space 

• Easier to accelerate

• Widening bottlenecks unleashes performance

• Easier to program

• Multiple Installations coming online

Better than ever
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