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MOTIVATION




OPENQXD [5]

m RGO

Simulations of QCD and QCD+QED O(a) improved Wilson-Clover fermions
Based on openQCD v1.6 [1, 2]

Variety of BCs; open/SF/periodic in time, C* boundaries [3] or periodic
boundaries in space

Powerful solvers: CGNE, GCR with Schwarz-alternating procedure and
inexact deflation [4]

Pure-MPI parallelisation, C89 standard (next release will be C99)
Actively developed and maintained by RC* collaboration

C* boundaries and QCD+QED Wilson-Clover fermions
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Offload solves to GPU (target system: new Alps machine and Lumi-G)
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GPU-ENABLED OPENQXD - MOTIVATION

Offload solves to GPU (target system: new Alps machine and Lumi-G)

-> OpenMP offloading

<4 Easy and rapid porting

— Disappointing results (more efforts required)
-» Coupling to existing solver suite

— Operator on GPU still a problem

= General solvers not on eye level with state-of-the-art lattice solvers
-> Own CUDA/HIP implementation in openQxD

=+ Cleanest solution (no external dependencies)

— Insane effort (lots of core changes, breaking changes, ...)
=> Coupling to QUDA

<+ No need to reinvent the wheel

<4 Get all features of QUDA (solver suite, eigensolvers, ...)
— Only real additional efforts: (1) Interface, (2) C* boundaries, (3) QCD+QED

Wilson-Clover




<

m Plug and play library to offload Dirac solves

m Supports many lattice discretisations (Wilson, staggered, Domain-wall, ...)
m Powerful solvers: BiCGstab, GCR with multigrid [6, 7], ...

m C++-14 standard

m Supports NVIDIA, AMD, Intel and CPU threading

m Actively developed and maintained by NVIDIA + many others

m NVIDIA licence (similar to MIT)




INTERFACING OPENQXD wiTH QUDA



OPENQXD: MEMORY LAYOUT |

/* Complex double struct =/ /* Clover field struct x/
typedef struct typedef struct

{

double re,im; double u[36];
} complex_dble; } pauli_dble;

Figure: Complex double struct Figure: Clover field struct

/* Gauge field struct =/
typedef struct

{
complex_dble c11,c12,c13,c21,c22,Cc23,€31,C32,C33;
} su3_dble;

Figure: Gauge field struct

m Gauge field d.o.f: 4V (V = lattice volume, 8 directions)
m Clover field d.o.f: 2V (V, 2 chiralities, 6x6 matrix (complex, Hermitian))




OPENQXD: MEMORY LAYOUT II

typedef struct
{

typedef struct
{

complex_dble c1,c2,c3;
} su3_vector_dble;

su3_vector_dble c1,c2,c3,cs4;
} spinor_dble;

Figure: SU(3) vector struct Figure: Spinor field struct

m Spinor field d.o.f: V (V = lattice volume, 4 spin, 3 color) — array of structs




DIFFERENT GAUGE FIELD LAYOUTS

m openQxD
» stores 8 (forward and backward) directed gauge fields for all odd-parity
points
> locally stores gauge fields on the boundaries only for odd-parity points and
not for even-parity points
= QUDA
» 4 gauge fields for each space-time point (one for each positive direction
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Figure: 2D example (4 x 4 local lattice) of how and which gauge fields are stored in
memory in openQxD (left) and QUDA (right). Filled lattice points are even, unfilled odd
lattice points.
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C* BOUNDARIES
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Figure: 2D example of a 6 x 6 lattice with C* boundary conditions on both directions.
We have the (doubled) x-direction (horizontal) and a direction with C* boundaries
(vertical). Left is the physical, right the mirror lattice. The union is the extended lattice




C* BOUNDARIES: IMPLEMENTATION IN QUDA

m Analogue to the implementation in openQCD

m Doubling the lattice as it comes from openQxD (i.e. additional index:
physical, mirror)

m Communication grid topology struct now contains a member property
cstar — number of spatial C* directions

m comm_rank_displaced(): calculates the neighbouring rank number
given one of (positive or negative) 8 directions — implements the
shifted boundaries
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m In addition to the SU(3)-valued gauge field U, (x), we have the U(1)-valued
gauge field A, (x)

m Combined: U(3)-valued field 94U, (x) with g5 the charge of a quark

m In QUDA, we just use

> QUDA_RECONSTRUCT_9
> QUDA_RECONSTRUCT_13
> QUDA_RECONSTRUCT_NO

m We have an U(1) SW-term,

0 3
| A~
DW 7 Dw+ Ci‘l(‘l)* JLVALV7 1
q SwW 4 Z f f ( )

f1,v=0

where q is the charge and the U(1) and Z\W(x) is the field strength tensor.




QCD+QED: IMPLEMENTATION IN QUDA

m Resulting term has the same properties as the SU(3) SW-term (Hermitian,
diagonal w.r.t chiralities)

m Clover field reorder class:
openQxD (row-major):

UQ UG + iU7

Uq

U,

QUDA (column-major):

Uo
Ug + iUy
Ug + iUy
Uso + iU
Uy + lUs3
Uny, + Uss

Uq
Use + iUy
Usg + ilUqg
Uso + iU
Uy + ilUn

Ug + iU9 U1o + iU11 U12 + iU13
Ui + 1Uq7  Usg + 1Usg  Uzo + IUx

U24 + iUQs U26 + iu27
Us Uso + iUs;
u,

u;
Usy + iU Us
U26 + IU27 U30 + IU31

u28 + iU29 U32 + iU33 U34 + iU35 U5

Uqy, + ilUsg

Uz + iUo3

Usg + iUag

U + iUs;

Uz, + iUss
Us

u,

(2)
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SOLVER INTERFACE




SOLVER INTERFACE IN OPENQXD

m Solvers are called by means of their function, i.e. cgne(), sap_gcr(),
dfl_sap_gcr()
m Usual utility:
> input file parsing
» solver setup
» call solver

Figure: Example solver sections




ADDITIONAL SOLVER TYPE

m Add solver type QUDA
m All options from QudaInvertParamand QudaMultigridParam

Figure: Example QUDA solver section




OPTIMISATIONS

No doubling of the gauge field

Calculate U(1) SW-term in QUDA (no transfer)
Offload smearing, contractions

Spinor field memory management (field unification)
Partitioning

multiple RHS




PERFORMANCE




TESTED SYSTEM

m Todi testing system at CSCS, Switzerland

m 4x NVIDIA® Grace™ CPU, 120GB RAM, 72 Neoverse V2 Armv9 cores

m 4x NVIDIA® H100 GPU, 96GB RAM

m NVLink® provides all-to-all cache-coherent memory between all host and
device memory

Figure: Todi: highest mountain in the Glarus Alps (3612 m)



https://commons.wikimedia.org/w/index.php?curid=170969
https://creativecommons.org/licenses/by-sa/3.0/

INVERTER SCALING

CSCS Alps testing system (GH200) - Solver - D300

8 - ideal scaling
-%- GPU: QUDA MG (4 GPUs per node)
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Figure: Strong scaling of one inversion of the Dirac operator; T x L3 = 128 x 643,
m. = 300 MeV, C*-boundaries in all 3 spatial directions.

m GDR not yet available on Alps
m NVSHMEM not yet available on Alps




CONCLUSION




CONCLUSIONS

© Up and running interface to QUDA

© C* boundaries in QUDA

© QCD+QED Wilson-Clover in QUDA

© Offloaded Dirac solves and eigensolver
@ Contractions

@ Smearing

@ Field memory manager




THANKS FOR LISTENING!
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OPENQXD: SPACETIME ORDERING |

m txyz-convention, i.e. 4-vector X = (Xo, X1, X2, X3)
m Lexicographical index (L, = rank-local lattice extent):

/\(X, L) = L3L2L1XO + L3L2X1 + L3X2 + X3 (4)

m openQxD orders indices in cache-blocks: decomposition of the rank-local
lattice into equal blocks of extent B,

» Within a block: A(b, B), where b = block-local Euclidean 4-vector
» Block themselves: A(n, Ng), where Ng,, = L,,/B, and n,, = |X,./B,|

m Even-odd ordering in the block (but not the blocks themselves)

K= B (VB/\(n, Ng) + A(b, B))J + P(x)g, (5)

where Vg = B,B;B,B; is the volume of a block, P(x) = (1 - (—1)%x %) gives the
parity and V = L;L,L,L,.



OPENQXD: SPACETIME ORDERING I

Al 1 45 15 57 27 61 31

40 10 44 14 56 26 60 | 30

33 3 37 7 49 19 53 23

32 2 36 6 48 18 52 22

t

Figure: 2D example (8 x 8 local lattice) of the rank-local unique lattice index in openQxD
(in time first convention (txyz)). The blue rectangles denote cache blocks of size 4 x 4.
Gray sites are odd, white sites are even lattice points.



C* DIRAC OPERATOR |

The QCD+QED C* Wilson-Clover Dirac operator in QCD simulations applied onto
a spinor field +(x) is (the lattice spacing is set to a = 1)

wi(X) = (4+ Mmo)y(x)

5 Z{ )=t )+ H =) =)

Z U;U/ ;U/ 1/) +qC Z O pv ;u/(/}

[Ll/O ,ul/O

M_\

where the gauge field H,(x) is the U(3)-valued link between extended lattice
point x and x + /i, the v, are the Dirac matrices obeying the Euclidean Clifford

algebra, {V/M’YV} = 25/w and Ouy = é [’Y/u’yl/]'



C* DIRAC OPERATOR I

The SU(3) field strength tensor F is defined as

'A:/W(X) =1 v(X

g Q

Quv(X) = U (U, (
U, (x)Uy(x
u

{ Quu(x)}
H H
v

(

(

=+ ) /J(XJFV) 1UV(X)
— i+ 0)7"U,(

W,(x—p—0)""U,
W, (x = DU, (x+ f—D)U,(x) "

) -
X
X —

+ o+
x

m

— 1)
U,(x—1o

)
where the gauge field U,,(x) is SU(3)-valued

+



C* DIRAC OPERATOR I

We add the U(1) SW-term,

;3
i ~
Dy, — Dy, + ch‘,(v1)z E O—,U,UA,U.V ) (7)
H,V=0

where q is the charge and the U(1) field strength tensor A, (x) is defined as

A i

A (X) = ——Im{z,,,(X) + 2,0 (X — /1)
4Qel
+Z[LII(X - 19) + z;u/(X — [AL — 19)}
zﬂy(x) — ei{Au(XH‘AV(X‘s’ﬂ)*Au()H’f’)*AV(X)}



C* BOUNDARY CONDITIONS

The implementation of the C* boundary conditions for the fields is the
following (orbifold construction):

Au(x + Lpk) =
.
U+ Lef) = € “wf( ). -
Pp(x + Lek) = —yf (X)C,
Uu(x+ Lek) = U™ pu(x),
where Ly, is the size of the lattice in direction k, U* denotes complex
conjugation. The charge-conjugation matrix C satisfies
CT=-C, Cl=C", C'.C=—7. (9)
The gauge action is
1
Sesu@ = = Y tr[1=U(C)], (10)
% CES,
Seu = 5225 Y tr[1—2(C)], (11)
20;,€5 ceSo

where the bare coupling constants are go, €0, ge; = 1/6. Given a path C on a
lattice, U(C) and Z(C) denote the SU(3) and U(1) parallel transport along C.



WHY THE DOUBLED LATTICE?

On the extended lattice, points x and x + Lk do not coincide!
Admissible fields are given by the boundary conditions

Admissible gauge fields on mirror lattice are completely determined by
their value on the physical lattice

On physical lattice: ¢ and ¢ are independent Grassmann variables

m On extended lattice: ¢ is completely determined by 1
m Integration measure for fermion field:
[dw]/\phys H d’l,[) H d/l/) - [dw]/\extended (12)
XENphys XE Nexended

— We need the doubled lattice for the fermion field!



DIRAC OPERATOR SCALING |

CSCS Alps testing system (GH200) - Dirac operator - D-type lattice

64 ideal scaling X, ideal scaling
-%- GPU: quda (4 GPUs per node) 1071 4 S -%- GPU: quda (4 GPUs per node)
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Figure: C* Wilson-Clover Dirac operator strong scaling

m GDR not yet available on Alps
m NVSHMEM not yet available on Alps



DIRAC OPERATOR SCALING |l

CSCS Alps testing system (GH200) - Dirac operator - node local lattice: 64x64x64x32
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Figure: C* Wilson-Clover Dirac operator weak scaling

m GDR not yet available on Alps
m NVSHMEM not yet available on Alps




UNIFICATION OF FIELDS




MOTIVATION

m Initial code: all functions implemented in CPU — no transfers needed

m Ideal final code: all functions implemented in GPU — no transfers needed
— we'll probably never reach that

m Intermediate phase: some functions are ported to GPU, but not all of
them — needs transfers
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MOTIVATION

m Initial code: all functions implemented in CPU — no transfers needed

m Ideal final code: all functions implemented in GPU — no transfers needed
— we'll probably never reach that

m Intermediate phase: some functions are ported to GPU, but not all of
them — needs transfers

Requirement 1

We don’t want to rewrite every program, when a new function is ported to GPU!

Requirement 2

Fully backwards compatible with openQxD’s memory layout



OPENQXD: OVERLOADING OF FUNCTIONS |

#if (defined AVX)

// implementation using AVX intrinsics
void functionA(spinor_dble *s) { ... }
#elif (defined x64)

// implementation using SSE2 intrinsics

void functionA(spinor_dble *s) { ... }
#telse

// default implementation

void functionA(spinor_dble *s) { ... }
#endif

Figure: Example overloading of functionA.



OPENQXD: OVERLOADING OF FUNCTIONS I

#if (defined AVX)

// implementation using AVX intrinsics
void functionA(spinor_dble *s) { ... }
#elif (defined x64)

// implementation using SSE2 intrinsics
void functionA(spinor_dble *s) { ... }

#elif (defined GPU_OFFLOADING)

// GPU overloading of the function
void functionA(spinor_dble *s) { ... }
#telse

// default implementation

void functionA(spinor_dble *s) { ... }
#endif

Figure: Example overloading of functionA.



UNIFIED FIELDS

CPU field GPU field

Figure: Each field with openQxD corresponds to a field within QUDA.

m openQxD operates on base pointers of struct-arrays
m Establish a 1-1 correspondence between CPU/GPU fields
— Everytime (de-)allocating a field — (de-)allocate on both devices
— Maintain consistency among the two fields (CPU/GPU manipulates field)



MAINTAINING CONSISTENCY

Spinor field 1 Spinor field 2
T T T
OXA OxA+NSPIN OXxA+2*NSPIN
base pointer 1 base pointer 2 base pointer 3

Figure: Current field allocation scheme.



MAINTAINING CONSISTENCY

Spinor field 1 Spinor field 2
T T T
OXA OxA+NSPIN OXxA+2*NSPIN
base pointer 1 base pointer 2 base pointer 3
Figure: Current field allocation scheme.
Spinor field 1 Spinor field 2
1 T T ' T
OXA O0xA+NSPIN base pointer 3

base pointer 1 X X .
0oxA+NSPIN+sizeof(spinor_info)

base pointer 2 ) _
P splnor_lnfo struct 2
spinor_info struct 1

Figure: New field allocation scheme (spinor_info struct after the data).



spinor_info STRUCT

Information held by the spinor_info struct:
m Field status: CPU_NEWER, GPU_NEWER, IN_SYNC

m GPU pointer: pointer to field on the GPU (i.e. pointer to
ColorSpinorField instance)

m Other information: eg. field size in bytes, stats, ...

= Only changes in the (de-)allocation functions: alloc_wsd(),
reserve_wsd(), release_wsd() + their single precision variants



PROCEDURE

m Functions within openQxD still operate on base pointers (in the same way
as before!) — they all still work (no change needed)
m GPU-offloaded functions now take the same CPU base pointer

1.
. Check if field needs to be transferred

. Transfer if needed

. Obtain GPU field pointer from info struct
. Update status field in info struct

. Continue function body with GPU field

o W N

Navigate to the spinor_info struct

m openQxD functions take the usual CPU base pointer

1.
. Check if field needs to be transferred
. Transfer if needed

. Update status field in info struct

. Continue function body with CPU field

o wN

Navigate to the spinor_info struct
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