O(a)-IMPROVED QCD+QED WILSON

DIRAC OPERATOR ON GPUS
OPENQXD wITH QUDA

ROMAN GRUBER

'yl " ‘I’ —
ETHziirich REGOY pasc

& LATTICE 2024
¥ecscs A
E gt o

RC* COLLABORATION: ANIAN ALTHERR ISABEL CAMPOS-PLASENCIA, ALESSANDRO COTELLUCCI, ALESSANDRO DE SANTIS, RO-
MAN GRUBER, TIM HARRIS, JAVAD KOMIJANI, MARINA MARINKOVIC, FRANCESCA MARGARI, LETIZIA PARATO, AGOSTINO PATELLA,
GAURAV RAY, SARA ROSSO, NAZARIO TANTALO, AND PAOLA TAVELLA

JuLy 30, 2024

INTRO / OVERVIEW

1. Motivation

2. Interfacing openQxD with QUDA
3. Solver interface

4. Performance

5. Conclusion

MOTIVATION

OPENQXD [5]

m RGO

Simulations of QCD and QCD+QED O(a) improved Wilson-Clover fermions
Based on openQCD v1.6 [1, 2]

Variety of BCs; open/SF/periodic in time, C* boundaries [3] or periodic
boundaries in space

Powerful solvers: CGNE, GCR with Schwarz-alternating procedure and
inexact deflation [4]

Pure-MPI parallelisation, C89 standard (next release will be C99)
Actively developed and maintained by RC* collaboration

C* boundaries and QCD+QED Wilson-Clover fermions

GPU-ENABLED OPENQXD - MOTIVATION

Offload solves to GPU (target system: new Alps machine and Lumi-G)

GPU-ENABLED OPENQXD - MOTIVATION

Offload solves to GPU (target system: new Alps machine and Lumi-G)

-> OpenMP offloading

<4 Easy and rapid porting
— Disappointing results (more efforts required)

GPU-ENABLED OPENQXD - MOTIVATION

Offload solves to GPU (target system: new Alps machine and Lumi-G)

-> OpenMP offloading

<4 Easy and rapid porting

— Disappointing results (more efforts required)
-» Coupling to existing solver suite

— Operator on GPU still a problem
= General solvers not on eye level with state-of-the-art lattice solvers

GPU-ENABLED OPENQXD - MOTIVATION

Offload solves to GPU (target system: new Alps machine and Lumi-G)

-> OpenMP offloading

<4 Easy and rapid porting

— Disappointing results (more efforts required)
-» Coupling to existing solver suite

— Operator on GPU still a problem

= General solvers not on eye level with state-of-the-art lattice solvers
-> Own CUDA/HIP implementation in openQxD

=+ Cleanest solution (no external dependencies)
— Insane effort (lots of core changes, breaking changes, ...)

GPU-ENABLED OPENQXD - MOTIVATION

Offload solves to GPU (target system: new Alps machine and Lumi-G)

-> OpenMP offloading

<4 Easy and rapid porting

— Disappointing results (more efforts required)
-» Coupling to existing solver suite

— Operator on GPU still a problem

= General solvers not on eye level with state-of-the-art lattice solvers
-> Own CUDA/HIP implementation in openQxD

=+ Cleanest solution (no external dependencies)

— Insane effort (lots of core changes, breaking changes, ...)
=> Coupling to QUDA

<+ No need to reinvent the wheel

<4 Get all features of QUDA (solver suite, eigensolvers, ...)
— Only real additional efforts: (1) Interface, (2) C* boundaries, (3) QCD+QED

Wilson-Clover

<

m Plug and play library to offload Dirac solves

m Supports many lattice discretisations (Wilson, staggered, Domain-wall, ...)
m Powerful solvers: BiCGstab, GCR with multigrid [6, 7], ...

m C++-14 standard

m Supports NVIDIA, AMD, Intel and CPU threading

m Actively developed and maintained by NVIDIA + many others

m NVIDIA licence (similar to MIT)

INTERFACING OPENQXD wiTH QUDA

OPENQXD: MEMORY LAYOUT |

/* Complex double struct =/ /* Clover field struct x/
typedef struct typedef struct

{

double re,im; double u[36];
} complex_dble; } pauli_dble;

Figure: Complex double struct Figure: Clover field struct

/* Gauge field struct =/
typedef struct

{
complex_dble c11,c12,c13,c21,c22,Cc23,€31,C32,C33;
} su3_dble;

Figure: Gauge field struct

m Gauge field d.o.f: 4V (V = lattice volume, 8 directions)
m Clover field d.o.f: 2V (V, 2 chiralities, 6x6 matrix (complex, Hermitian))

OPENQXD: MEMORY LAYOUT II

typedef struct
{

typedef struct
{

complex_dble c1,c2,c3;
} su3_vector_dble;

su3_vector_dble c1,c2,c3,cs4;
} spinor_dble;

Figure: SU(3) vector struct Figure: Spinor field struct

m Spinor field d.o.f: V (V = lattice volume, 4 spin, 3 color) — array of structs

DIFFERENT GAUGE FIELD LAYOUTS

m openQxD
» stores 8 (forward and backward) directed gauge fields for all odd-parity
points
> locally stores gauge fields on the boundaries only for odd-parity points and
not for even-parity points
= QUDA
» 4 gauge fields for each space-time point (one for each positive direction

! !

—— @ — O «——

LT

— 0 —— & —

[

—— @ —— 0 ——

Lo

— 0 —— e ——

T

— o ——

|

—— 0 ——

I
|
:

-

— — o ——

|

—— 0 ——

£
S

i

%

e —+ 0 +— ® — O
0O +—— @ «—— 0 «—— o

—

—— 0 +—— @ —> 0 —— ®

openQxD QUDA

Figure: 2D example (4 x 4 local lattice) of how and which gauge fields are stored in
memory in openQxD (left) and QUDA (right). Filled lattice points are even, unfilled odd
lattice points.

STATUS

Interface
C* boundaries
QCD+QED Wilson-Clover

STATUS

® Interface
C* boundaries
QCD+QED Wilson-Clover

C* BOUNDARIES

Y
I

O o o o o o©
SN T S T
el e I ey et B
[S T R
oo o o o o
[T S
oo o o 0o o
[N T S
oo o o 0o o
[L R
oo o o o o
[L R
o—90—90—0—0— 0
1

S

physical lattice

T
mirror lattice

Figure: 2D example of a 6 x 6 lattice with C* boundary conditions on both directions.
We have the (doubled) x-direction (horizontal) and a direction with C* boundaries
(vertical). Left is the physical, right the mirror lattice. The union is the extended lattice

C* BOUNDARIES: IMPLEMENTATION IN QUDA

m Analogue to the implementation in openQCD

m Doubling the lattice as it comes from openQxD (i.e. additional index:
physical, mirror)

m Communication grid topology struct now contains a member property
cstar — number of spatial C* directions

m comm_rank_displaced(): calculates the neighbouring rank number
given one of (positive or negative) 8 directions — implements the
shifted boundaries

STATUS

® Interface
C* boundaries
QCD+QED Wilson-Clover

STATUS

® Interface
® C* boundaries
QCD+QED Wilson-Clover

m In addition to the SU(3)-valued gauge field U, (x), we have the U(1)-valued
gauge field A, (x)

m Combined: U(3)-valued field 94U, (x) with g5 the charge of a quark

m In QUDA, we just use

> QUDA_RECONSTRUCT_9
> QUDA_RECONSTRUCT_13
> QUDA_RECONSTRUCT_NO

m We have an U(1) SW-term,

0 3
| A~
DW 7 Dw+ Ci‘l(‘l)* JLVALV7 1
q SwW 4 Z f f ()

f1,v=0

where q is the charge and the U(1) and Z\W(x) is the field strength tensor.

QCD+QED: IMPLEMENTATION IN QUDA

m Resulting term has the same properties as the SU(3) SW-term (Hermitian,
diagonal w.r.t chiralities)

m Clover field reorder class:
openQxD (row-major):

UQ UG + iU7

Uq

U,

QUDA (column-major):

Uo
Ug + iUy
Ug + iUy
Uso + iU
Uy + lUs3
Uny, + Uss

Uq
Use + iUy
Usg + ilUqg
Uso + iU
Uy + ilUn

Ug + iU9 U1o + iU11 U12 + iU13
Ui + 1Uq7 Usg + 1Usg Uzo + IUx

U24 + iUQs U26 + iu27
Us Uso + iUs;
u,

u;
Usy + iU Us
U26 + IU27 U30 + IU31

u28 + iU29 U32 + iU33 U34 + iU35 U5

Uqy, + ilUsg

Uz + iUo3

Usg + iUag

U + iUs;

Uz, + iUss
Us

u,

(2)

STATUS

® Interface
® C* boundaries
QCD+QED Wilson-Clover

STATUS

® Interface
® C* boundaries
& QCD+QED Wilson-Clover

SOLVER INTERFACE

SOLVER INTERFACE IN OPENQXD

m Solvers are called by means of their function, i.e. cgne(), sap_gcr(),
dfl_sap_gcr()
m Usual utility:
> input file parsing
» solver setup
» call solver

Figure: Example solver sections

ADDITIONAL SOLVER TYPE

m Add solver type QUDA
m All options from QudaInvertParamand QudaMultigridParam

Figure: Example QUDA solver section

OPTIMISATIONS

No doubling of the gauge field

Calculate U(1) SW-term in QUDA (no transfer)
Offload smearing, contractions

Spinor field memory management (field unification)
Partitioning

multiple RHS

PERFORMANCE

TESTED SYSTEM

m Todi testing system at CSCS, Switzerland

m 4x NVIDIA® Grace™ CPU, 120GB RAM, 72 Neoverse V2 Armv9 cores

m 4x NVIDIA® H100 GPU, 96GB RAM

m NVLink® provides all-to-all cache-coherent memory between all host and
device memory

Figure: Todi: highest mountain in the Glarus Alps (3612 m)

https://commons.wikimedia.org/w/index.php?curid=170969
https://creativecommons.org/licenses/by-sa/3.0/

INVERTER SCALING

CSCS Alps testing system (GH200) - Solver - D300

8 - ideal scaling
-%- GPU: QUDA MG (4 GPUs per node)
~%- CPU: openQxD DFL (256 ranks per node)
10!
4
g
@
i)
=3 o
3 £
] =1
o
@2 g
1]
>
©
10°
1
4 8 16 32 4 8 16 32
Nodes Nodes

Figure: Strong scaling of one inversion of the Dirac operator; T x L3 = 128 x 643,
m. = 300 MeV, C*-boundaries in all 3 spatial directions.

m GDR not yet available on Alps
m NVSHMEM not yet available on Alps

CONCLUSION

CONCLUSIONS

© Up and running interface to QUDA

© C* boundaries in QUDA

© QCD+QED Wilson-Clover in QUDA

© Offloaded Dirac solves and eigensolver
@ Contractions

@ Smearing

@ Field memory manager

THANKS FOR LISTENING!

REFERENCES |

[11 M. LUSCHER ET AL., OPENQCD, SIMULATION PROGRAMS FOR LATTICE QCD, (2012)

[2] M. LUSCHER AND S. SCHAEFER, “LATTICE QCD WITH OPEN BOUNDARY CONDITIONS AND
TWISTED-MASS REWEIGHTING”, Comput. Phys. Commun. 184, 519-528 (2013),
arXiv:1206.2809 [hep-lat].

[3] A.S.KRONFELD AND U. J. WIESE, “SU(N) GAUGE THEORIES WITH C-PERIODIC BOUNDARY
CONDITIONS (I). TOPOLOGICAL STRUCTURE”, Nuclear Physics B 357, 521-533 (1991).

[4] M. LUSCHER, “LOCAL COHERENCE AND DEFLATION OF THE LOW QUARK MODES IN LATTICE
acp”, Journal of High Energy Physics 2007, 081 (2007), eprint: ©7606.2298,

[5] . CAMPOS ET AL., “OPENQ*D CODE: A VERSATILE TOOL FOR QCD+QED SIMULATIONS”, The
European Physical Journal C 80, 1-24 (2020), eprint: 1908.11673.

[6] R.BABICH ET AL., “ADAPTIVE MULTIGRID ALGORITHM FOR THE LATTICE WILSON-DIRAC
OPERATOR”, Phys. Rev. Lett. 105, 201602 (2010), arXiv:1005.3043 [hep-lat].

[7]1). ESPINOZA-VALVERDE, A. FROMMER, G. RAMIREZ-HIDALGO, AND M. ROTTMANN,
“COARSEST-LEVEL IMPROVEMENTS IN MULTIGRID FOR LATTICE QCD ON LARGE-SCALE
COMPUTERS”, Comput. Phys. Commun. 292, 108869 (2023), arXiv:2205.09104
[math.NA].

https://doi.org/10.1016/j.cpc.2012.10.003
https://arxiv.org/abs/1206.2809
https://doi.org/10.1016/0550-3213(91)90479-H
https://doi.org/10.1088/1126-6708/2007/07/081
0706.2298
https://doi.org/10.1140/epjc/s10052-020-7617-3
https://doi.org/10.1140/epjc/s10052-020-7617-3
1908.11673
https://doi.org/10.1103/PhysRevLett.105.201602
https://arxiv.org/abs/1005.3043
https://doi.org/10.1016/j.cpc.2023.108869
https://arxiv.org/abs/2205.09104
https://arxiv.org/abs/2205.09104

REFERENCES Il

[8] M. A. CLARK, R. BABICH, K. BARROS, R. C. BROWER, AND C. REBBI, “SOLVING LATTICE QCD
SYSTEMS OF EQUATIONS USING MIXED PRECISION SOLVERS ON GPUS”, Computer Physics
Communications 181, 1517-1528 (2010), eprint: ©911.3191.

https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1016/j.cpc.2010.05.002
0911.3191

APPENDIX

OPENQXD: SPACETIME ORDERING |

m txyz-convention, i.e. 4-vector X = (Xo, X1, X2, X3)
m Lexicographical index (L, = rank-local lattice extent):

/\(X, L) = L3L2L1XO + L3L2X1 + L3X2 + X3 (4)

m openQxD orders indices in cache-blocks: decomposition of the rank-local
lattice into equal blocks of extent B,

» Within a block: A(b, B), where b = block-local Euclidean 4-vector
» Block themselves: A(n, Ng), where Ng,, = L,,/B, and n,, = |X,./B,|

m Even-odd ordering in the block (but not the blocks themselves)

K= B (VB/\(n, Ng) + A(b, B))J + P(x)g, (5)

where Vg = B,B;B,B; is the volume of a block, P(x) = (1 - (—1)%x %) gives the
parity and V = L;L,L,L,.

OPENQXD: SPACETIME ORDERING I

Al 1 45 15 57 27 61 31

40 10 44 14 56 26 60 | 30

33 3 37 7 49 19 53 23

32 2 36 6 48 18 52 22

t

Figure: 2D example (8 x 8 local lattice) of the rank-local unique lattice index in openQxD
(in time first convention (txyz)). The blue rectangles denote cache blocks of size 4 x 4.
Gray sites are odd, white sites are even lattice points.

C* DIRAC OPERATOR |

The QCD+QED C* Wilson-Clover Dirac operator in QCD simulations applied onto
a spinor field +(x) is (the lattice spacing is set to a = 1)

wi(X) = (4+ Mmo)y(x)

5 Z{)=t)+ H =) =)

Z U;U/ ;U/ 1/) +qC Z O pv ;u/(/}

[Ll/O ,ul/O

M_\

where the gauge field H,(x) is the U(3)-valued link between extended lattice
point x and x + /i, the v, are the Dirac matrices obeying the Euclidean Clifford

algebra, {V/M’YV} = 25/w and Ouy = é [’Y/u’yl/]'

C* DIRAC OPERATOR I

The SU(3) field strength tensor F is defined as

'A:/W(X) =1 v(X

g Q

Quv(X) = U (U, (
U, (x)Uy(x
u

{ Quu(x)}
H H
v

(

(

=+) /J(XJFV) 1UV(X)
— i+ 0)7"U,(

W,(x—p—0)""U,
W, (x = DU, (x+ f—D)U,(x) "

) -
X
X —

+ o+
x

m

— 1)
U,(x—1o

)
where the gauge field U,,(x) is SU(3)-valued

+

C* DIRAC OPERATOR I

We add the U(1) SW-term,

;3
i ~
Dy, — Dy, + ch‘,(v1)z E O—,U,UA,U.V) (7)
H,V=0

where q is the charge and the U(1) field strength tensor A, (x) is defined as

A i

A (X) = ——Im{z,,,(X) + 2,0 (X — /1)
4Qel
+Z[LII(X - 19) + z;u/(X — [AL — 19)}
zﬂy(x) — ei{Au(XH‘AV(X‘s’ﬂ)*Au()H’f’)*AV(X)}

C* BOUNDARY CONDITIONS

The implementation of the C* boundary conditions for the fields is the
following (orbifold construction):

Au(x + Lpk) =
.
U+ Lef) = € “wf(). -
Pp(x + Lek) = —yf (X)C,
Uu(x+ Lek) = U™ pu(x),
where Ly, is the size of the lattice in direction k, U* denotes complex
conjugation. The charge-conjugation matrix C satisfies
CT=-C, Cl=C", C'.C=—7. (9)
The gauge action is
1
Sesu@ = = Y tr[1=U(C)], (10)
% CES,
Seu = 5225 Y tr[1—2(C)], (11)
20;,€5 ceSo

where the bare coupling constants are go, €0, ge; = 1/6. Given a path C on a
lattice, U(C) and Z(C) denote the SU(3) and U(1) parallel transport along C.

WHY THE DOUBLED LATTICE?

On the extended lattice, points x and x + Lk do not coincide!
Admissible fields are given by the boundary conditions

Admissible gauge fields on mirror lattice are completely determined by
their value on the physical lattice

On physical lattice: ¢ and ¢ are independent Grassmann variables

m On extended lattice: ¢ is completely determined by 1
m Integration measure for fermion field:
[dw]/\phys H d’l,[) H d/l/) - [dw]/\extended (12)
XENphys XE Nexended

— We need the doubled lattice for the fermion field!

DIRAC OPERATOR SCALING |

CSCS Alps testing system (GH200) - Dirac operator - D-type lattice

64 ideal scaling X, ideal scaling
-%- GPU: quda (4 GPUs per node) 1071 4 S -%- GPU: quda (4 GPUs per node)
~¥- CPU: openqgxd (256 tasks per node) '“a(__\ ~¥- CPU: openqgxd (256 tasks per node)
324
16 4 =
& 1072
o o
3 £
o 8 =
2 o
“ g
53
S
44 B
10-2 4
24
1
T T T T T T T T T T T T T T
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Nodes Nodes

Figure: C* Wilson-Clover Dirac operator strong scaling

m GDR not yet available on Alps
m NVSHMEM not yet available on Alps

DIRAC OPERATOR SCALING |l

CSCS Alps testing system (GH200) - Dirac operator - node local lattice: 64x64x64x32

0.030
1.01 iinls oty b e ideal scaling
TELN -%- GPU: quda (4 GPUs per node)
o~ ~%- CPU: openqxd (256 tasks per node]
x\\‘\\ o025 ¥ penaxd (p)
0.84 \ X X
\
\ " w2
0.020 1 -
0.6 & VR
g ¢
53 £
E = 0.015
S o
o ©
0.4 4 5
s
0.010 A
0.24
ideal scaling 0.005 7
-¥- GPU: quda (4 GPUs per node) ‘__,46---_ge——
0.0 -¥- CPU: opengxd (256 tasks per node)
T T T T T 0.000 T T T T ™ ™
1 2 4 8 16 1 2 4 8 16 32
Nodes

Nodes

Figure: C* Wilson-Clover Dirac operator weak scaling

m GDR not yet available on Alps
m NVSHMEM not yet available on Alps

UNIFICATION OF FIELDS

MOTIVATION

m Initial code: all functions implemented in CPU — no transfers needed

m Ideal final code: all functions implemented in GPU — no transfers needed
— we'll probably never reach that

m Intermediate phase: some functions are ported to GPU, but not all of
them — needs transfers

MOTIVATION

m Initial code: all functions implemented in CPU — no transfers needed

m Ideal final code: all functions implemented in GPU — no transfers needed
— we'll probably never reach that

m Intermediate phase: some functions are ported to GPU, but not all of
them — needs transfers

Requirement 1

We don’t want to rewrite every program, when a new function is ported to GPU!

MOTIVATION

m Initial code: all functions implemented in CPU — no transfers needed

m Ideal final code: all functions implemented in GPU — no transfers needed
— we'll probably never reach that

m Intermediate phase: some functions are ported to GPU, but not all of
them — needs transfers

Requirement 1

We don’t want to rewrite every program, when a new function is ported to GPU!

Requirement 2

Fully backwards compatible with openQxD’s memory layout

OPENQXD: OVERLOADING OF FUNCTIONS |

#if (defined AVX)

// implementation using AVX intrinsics
void functionA(spinor_dble *s) { ... }
#elif (defined x64)

// implementation using SSE2 intrinsics

void functionA(spinor_dble *s) { ... }
#telse

// default implementation

void functionA(spinor_dble *s) { ... }
#endif

Figure: Example overloading of functionA.

OPENQXD: OVERLOADING OF FUNCTIONS I

#if (defined AVX)

// implementation using AVX intrinsics
void functionA(spinor_dble *s) { ... }
#elif (defined x64)

// implementation using SSE2 intrinsics
void functionA(spinor_dble *s) { ... }

#elif (defined GPU_OFFLOADING)

// GPU overloading of the function
void functionA(spinor_dble *s) { ... }
#telse

// default implementation

void functionA(spinor_dble *s) { ... }
#endif

Figure: Example overloading of functionA.

UNIFIED FIELDS

CPU field GPU field

Figure: Each field with openQxD corresponds to a field within QUDA.

m openQxD operates on base pointers of struct-arrays
m Establish a 1-1 correspondence between CPU/GPU fields
— Everytime (de-)allocating a field — (de-)allocate on both devices
— Maintain consistency among the two fields (CPU/GPU manipulates field)

MAINTAINING CONSISTENCY

Spinor field 1 Spinor field 2
T T T
OXA OxA+NSPIN OXxA+2*NSPIN
base pointer 1 base pointer 2 base pointer 3

Figure: Current field allocation scheme.

MAINTAINING CONSISTENCY

Spinor field 1 Spinor field 2
T T T
OXA OxA+NSPIN OXxA+2*NSPIN
base pointer 1 base pointer 2 base pointer 3
Figure: Current field allocation scheme.
Spinor field 1 Spinor field 2
1 T T ' T
OXA O0xA+NSPIN base pointer 3

base pointer 1 X X .
0oxA+NSPIN+sizeof(spinor_info)

base pointer 2) _
P splnor_lnfo struct 2
spinor_info struct 1

Figure: New field allocation scheme (spinor_info struct after the data).

spinor_info STRUCT

Information held by the spinor_info struct:
m Field status: CPU_NEWER, GPU_NEWER, IN_SYNC

m GPU pointer: pointer to field on the GPU (i.e. pointer to
ColorSpinorField instance)

m Other information: eg. field size in bytes, stats, ...

= Only changes in the (de-)allocation functions: alloc_wsd(),
reserve_wsd(), release_wsd() + their single precision variants

PROCEDURE

m Functions within openQxD still operate on base pointers (in the same way
as before!) — they all still work (no change needed)
m GPU-offloaded functions now take the same CPU base pointer

1.
. Check if field needs to be transferred

. Transfer if needed

. Obtain GPU field pointer from info struct
. Update status field in info struct

. Continue function body with GPU field

o W N

Navigate to the spinor_info struct

m openQxD functions take the usual CPU base pointer

1.
. Check if field needs to be transferred
. Transfer if needed

. Update status field in info struct

. Continue function body with CPU field

o wN

Navigate to the spinor_info struct

	Intro / Overview
	Motivation
	Interfacing openQxD with QUDA
	Solver interface
	Performance
	Conclusion
	Appendix
	References
	Appendix
	Unification of fields

