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Trace Estimation in LQCD.
The Hutchinson’s method.

Trace estimation is an ubiquitous problem in Lattice QCD.
Given A ∈ Cn×n, large and sparse. (104 < n < 108)

Estimate the trace t̂r(A−1) ≈ tr(A−1).

With Hutchinson’s method we get an
Estimate

t̂r(A−1) =
1

N

∑
i

(x(i))
†
A−1x(i). (1)

With random vectors following the distribution:

x ∈ Rn : xi ∈ {−1, 1,−i, i} with equal probability
1

4
. (2)
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The problem of the variance

Estimate

t̂r(A−1) =
1

N

∑
i

(x(i))
†
A−1x(i).

Variance of the Estimate∗

V[t̂r(A−1)] =
1

2N

V[(x(i))
†
A−1x(i)]︷ ︸︸ ︷

||offdiag(A−1)||2F . (3)

In order to achieve an accuracy ϵ,

if ||...||2F is large → N is large.

∗See [1] and [2].
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Tackling the variance in trace estimation.

Our work focuses on tackling the problem of large variances in
the estimation of the estimate t̂r(A−1).

Due to the relation between || · ||2F and σi,

V[t̂r(A−1)] =
1

2N
||offdiag(A−1)||2F =

1

2N

(
n∑

i=1

1

σ2
i

−
n∑

i=1

|Aii, |−2

)
.

we can deflate to get rid of the smallest singular values of
the operator A to reduce the variance.
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Deflation in a nutshell

In our context, the essence of Deflation [3] can be
summarized as follows:

▶ Idea: Remove a part of the operator that contributes to
most of the Variance.

▶ How? Split the trace in two terms:

tr(A−1) = tr((I − Π)A−1) + tr(ΠA−1). (4)

▶ Stochastic term with small variance (Hopefully).

▶ Direct term. Cheap to compute.

So one can be creative and smart when constructing Π.
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Our main tool: AMG solver

Estimate

t̂r(A−1) =
1

N

∑
i

(x(i))
H
A−1x(i). (5)
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Our main deflation tool: AMG solver

Our Multigrid: DD-αAMG: [8]
Domain Decomposition

Aggregation-Based αdaptive
Algebraic Multigrid

Figure: Picture 2

▶ Coarse-grid operator:

Ac = RAP, R = P †.

▶ range(P ) contains the
near kernel, i.e., many
low modes.

▶ Coarser grid → cheaper
solves.
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Our deflation methods: Deflation space for ”free”
Mapping Multigrid to Multilevel Monte Carlo (a 2lvl method)

▶ Use range(P ) since it contains the low modes of A.

▶ The inverse can be split as

A−1 = (A−1 − PA−1
c P †)︸ ︷︷ ︸

M

+ PA−1
c P †.

▶ Regard PA−1
c P † as an approx. of A−1 on coarser grid.

▶ Hence, expect cancellation of the problematic modes and
hence reduce the variance.

▶ Stochastically:

t̂r(A−1) =
1

N

N∑
i=1

[
(x(i))†M(x(i))

]
+ tr(A−1

c ).
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We can do the same at all Multigrid levels!

Expand so you cover all your MG
levels: MGMLMC

t̂r(A−1) =
L−1∑
l=1

t̂r(Ml) + t̂r(A−1
L ).

with

Ml = A−1
l − P lA

−1
l+1P

†
l︸ ︷︷ ︸

Deflating L-1 levels

This is an oblique projection...

- Inversions are cheaper
on coarser grid.

- Local coherence leads
to larger deflation space.

- Other techniques
require eigensolver to get
deflation vectors.

- P is at hand from
Multigrid solver.
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Introducing an orthogonal Π

We can create an orthogonal projector Π from P . We get an

Orthogonal term Ol = (I − P lP
†
l )A

−1
l (I − P lP

†
l )

When introducing it, a new term arises,

Full Rank term Fl = P †
lA

−1
l P l − Al+1

so we call this method
Split MGMLMC

t̂r(A−1) =
L−1∑
l=1

t̂r(Ol) +
L−1∑
l=1

t̂r(Fl) + t̂r(A−1
L ).
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What we measure

V [t̂r(Op)] =
1

2N
||offdiag(Op)||2F︸ ︷︷ ︸

V[x†Opx]

.

So in what follows, we present the sampled variance.

V[x†Opx] ≈ V̂.
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Runs on a 192× 643 lattice. CLS collaboration

t̂r(A−1) =

L−1∑
l=1

t̂r(Ml) + t̂r(A−1
L ).

t̂r(A−1) =

L−1∑
l=1

t̂r(Ol)

+

L−1∑
l=1

t̂r(Fl)

+ t̂r(A−1
L ).
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Runs on a 192× 963 lattice. CLS collaboration

t̂r(A−1) =
L−1∑
l=1

t̂r(Ml)+t̂r(A−1
L ).

t̂r(A−1) =
L−1∑
l=1

t̂r(Ol)

+
L−1∑
l=1

t̂r(Fl)

+ t̂r(A−1
L ).
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Cost 192× 963 lattice
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Work in progress.

We want to translate this results to traces of the form
tr(B(t)A−1(t, t)).

B(t) is an operator which acts on spin, color and space indices,

For the operator B =
∑

i Γi∇i:
We simply inserted our deflation on A−1(t, t).

Method Trace Variance
Hutchinson 12.1 8906

Inex-Deflation (k=32) 11.8 8660
MGMLMC 11.5 7896(1stlvl) 497(2ndlvl)

Work in progress: 164 Lattice in MATLAB.
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Conclusions and outlook

Takeaway

▶ Multigrid MLMC presents a better reduction of the
variance when compared to inexact deflation.

▶ This, while saving the cost of constructing the deflation
space.

Notes and outlook

▶ Note: The MG hierarchy you have for a good solver is
enough for our method.

▶ Also tried: Using deflation on top of our operators, does
not bring further reduction of the variance.

▶ Future posibilties: How could we further improve
Multigrid MLMC for tr(B(t)A−1(t, t))? Deflate B?
Probing using structure of B?.
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Gracias!
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Deflation techniques - comparison.

Deflation method Main cost

Inexact Deflation.
With k singular
vectors.

▶ Precompute Vk (Inverse BPI)

▶ k solves.

Multigrid Deflation.
With k singular
vectors on coarser
(smaller) grid.

▶ Precompute V c
k on coarser

grid. (cheaper BPI)

▶ Exact eigensolver for a matrix
C ∈ Ck×k

Multigrid Multilevel
Monte Carlo. ▶ Precompute Nothing.

▶ stochastics on coarser levels
(Cheapest of all).J. Jimenez-Merchan, Multigrid MLMC 18/21



MGMLMC a Projectors Perspective
What Projector do we use to deflate?

This is our multilevel construction:

tr(A) =
L−1∑
l=1

[
tr(Al − PlAl+1P

†
l )
]
+ tr(AL).

The matrix
Πl = PlA

−1
l+1P

†
l Al.

is an oblique projector,

Π2
l = Π and Π†

l ̸= Π.

Furthermore:

A−1
l = (I − Πl)A

−1
l +ΠlA

−1
l = A−1

l − PlA
−1
l+1P

†
l .
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MGMLMC: an Orthogonal Projector

In our Multigrid construction, we have that P †
l Pl = Il.

Then, we can proceed similarly as we did before:

A−1
l = (I − PlP

†
l )A

−1
l + (PlP

†
l A

−1
l ), l = 1, ..., L.

Since

tr((PlP
†
l )A

−1
l ) = tr(P †

l A
−1
l Pl) = tr(P †

l A
−1
l Pl−A−1

l+1)+tr(A−1
l+1),

then

tr(A−1) = tr((I−PlP
†
l )A

−1
l )+tr(P †

l AlP
−1
l −A−1

l+1)+tr(A−1
l+1)
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MGMLMC: an Orthogonal Projector

tr(A−1) = tr((I−PlP
†
l )A

−1
l )+tr(P †

l AlP
−1
l −A−1

l+1)+tr(A−1
l+1)

And we can do one more trick:

tr(A−1
l ) = tr((I − PlP

†
l )A

−1
l (I−PlP

†
l ))+tr(P †

l A
−1
l Pl−A−1

l+1)

An L-level decomposition of the trace of a matrix A

tr(A−1) =
L−1∑
l=1

[
tr((I − PlP

†
l )A

−1
l (I − PlP

†
l )) + tr(P †

l A
−1
l Pl − A−1

l+1)
]

+ tr(AL)
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