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Motivation

» Surface tension not well measured at large N

» Improving on existing data

» Amplitude of surface fluctuations in determining the interface
tension

» Eases the tunneling situation due to absence of barriers



Existing Result

» Determination through tunneling probability:
P o exp[—20A/ T]

» Requires small enough volume for the tunneling to be
non-negligible

> o/T3 = —0.104(3) + 0.0138(3)N? (Lucini, Teper, Wenger -
2005)

» o/T3 = —0.333(9) + 0.118(3) N in same publication

» Unable to verify N? behaviour in study



Setup

> Plaquette action: 8 ,{1— +ReTrUp,} where 8 = 2g—'¥
» Heat bath + overrelaxation updates
» Simulations with HILA on GPUs

» Elongated system to ensure that the interface is a minimal
surface
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P Restrict the system to the intermediate state
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Method

» Location of the surface

» Calculating the interface tension from the surface fluctuation

(22) = wom



Smearing

» Smearing is necessary as the surfaces are too rough
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Smearing

» Eliminates the UV modes and noise
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Smearing

» Long range structure preserved
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Smearing

> SU(16)
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Smearing Correction

» Kernel correction
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Results

» Critical couplings
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Results

» Critical couplings
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Surface Tension

» Quadratic fit:

1

c + cN?, cg = —0.19(2), ¢ = 0.0189(11)
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Volume effects

» Similar behaviour with different volumes

SU(0) N, =6
T * T
0.5 75% %
L o
‘.
E 3
04 e
@
L .'
. @«
=03 -
O
0217 | @ 60*x240
L | = 40°x 160
01}
0 \ \
0 1 2

&




Volume effects

» Weak volume

dependence
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Plaquette Difference

N¢ ‘ N¢ ‘ Be (uc) ‘ (ug)

4 6 | 10.7919 | 0.4380 (1.0303e-06) | 0.4373 (1.5171e-06)
4 8 | 11.0844 | 0.4176 (6.6930e-07) | 0.4175 (1.1014e-06)
5 6 | 17.1108 | 0.4469 (2.8967e-06) | 0.4461 (8.1081e-07)
5 8 | 17.5612 | 0.4258 (6.6025e-07) | 0.4256 (1.3036e-06)
8 6 | 44.5620 | 0.4564 (2.7630e-06) | 0.4555 (2.7272e-06)
8 8 | 45.6778 | 0.4346 (1.3351e-06) | 0.4344 (1.3022¢-06)
10 | 6 | 69.9225 | 0.4586 (2.6406e-06) | 0.4577 (2.6915e-06)
10 | 8 | 71.6475 | 0.4367 (1.7921e-06) | 0.4364 (1.7316e-06)
16 | 6 | 179.8509 | 0.4609 (1.8135e-06) | 0.4599 (1.9464e-06)




Plaquette Difference

Au(n,—6) = 0.0009686(24) — 0.00385(11)/ N2
Au(, —g) = 0.0002413(24) — 0.00105(8)/N?
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Advantages

» Computation in polynomial time, enables huge volume
simulations

» Surface is easily located, unaffected by probability density
distribution

» More suitable for cases of stronger transition

» The use of mixed phase configurations result in absence of
tunneling barriers that cause slowdown



Conclusion

» Traditional method works well with smaller systems and when
the transition is not too strong

» Complementary method as larger systems are required to
explore the continuum limit

» Lots of smearing required

» Presents as a consistent and reliable method for studying
stronger transitions in general
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Outlook

» Prototype for a strongly coupled transition of strongly coupled
physics

» Thin wall bubble nucleation rate computation

» Latent heat determination
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