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3D hadron structure: from PDF to TMD PDF

Parton distribution function (PDF): fi/h(x)

- probability of finding a parton i in hadron h

carrying momentum fraction x → longitudinal

Transverse-momentum-dependent PDF (TMD PDF):

fi/h(x , k⃗T), or coordinate-space fi/h(x , b⃗T) =
∫

d2k⃗Te i k⃗T ·⃗bT fi(x , k⃗T)

- probability of finding parton i with fraction x and

transverse momentum k⃗T → longitudinal and transverse

(or the Fourier conjugate b⃗T)

⇒ Rich hadron 3D internal structure in TMD PDFs!
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Collins-Soper kernel

TMD PDFs can be determined in various processes

need ability to relate different energy scales Semi-Inclusive DIS
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Evolution of TMD PDFs:

1. UV renormalization scale µ 2. rapidity scale ζ

The evolution kernels are universal (independent of external hadron h)

fi/h(x , bT, µ, ζ) = fi/h(x , bT, µ0, ζ0)

× exp
[∫ µ

µ0

dµ′

µ′ γ
i
µ(µ′, ζ0)

]
exp

[
1
2γ

i
ζ(µ, bT) ln ζ

ζ0

]
UV anomalous dimension rapidity anomalous dimension

(Collins-Soper kernel)

UV anomalous dimension γ i
µ is perturbative as long as scales are large

But CS kernel γ i
ζ is always nonperturbative for bT ≳ Λ−1

QCD
(even if the evolution variables µ, ζ are perturbative)
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W boson mass

CS kernel also required as input into measurements of several observables

E.g. W boson mass extracted from pp̄ → W − → l−νl

Need robust understanding of all QCD theory

especially non-perturbative QCD effects

Variations in CS kernel ⇒ % variations in dσ/dqT
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figures from Johannes Michel, MIT CDF II, Science 2022

Distribution shape is sensitive to CS kernel, measurement of MW affected
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Quark Collins-Soper kernel

Our group’s LQCD calculation of quark CS kernel:
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Avkhadiev, Shanahan, Wagman, Zhao, PRD 108 (2023) 11, 114505
PRL 132 (2024) 23, 231901

- First such calculation with systematic control of quark mass, operator mixing,
and discretization effects

- Model-dependence in pheno. parameterizations is significant
lattice results are precise enough to discriminate between different models
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Gluon Collins-Soper kernel

What about gluon CS kernel?

Experimentally:

lack of data for gluon TMDs. But can expect in the near future from EIC

Theoretically:

- perturbative region: 1-loop result is

γζ(µ, bT ) = −αs

π
ln b2

Tµ
2

4e−2γE
×

{
CF , quark
CA, gluon

+ O(α2
s )

only differ by a group theory factor (CA v.s. CF ), almost the same as quark

- non-perturbative region: nobody knows!

This work: extend our calculation to the gluon CS kernel

it will be the first lattice prediction for future experiments
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LaMET

LQCD can not directly access parton physics defined on light-cone

Large-Momentum Effective Theory (LaMET): Provides a framework to

link Euclidean equal-time correlation functions to light-cone one
X. Ji, PRL 110 (2013), SCPMA57 (2014)

Boost=====⇒

Quasi: equal-time

LaMET======⇒

Physical: light-cone

Quasi distribution calculable on lattice, with same IR physics as light-cone

Differences in UV accounted for by perturbative matching
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Quasi-TMDs

Quasi-TMDs can be related to light-cone TMDs via LaMET
Ebert, Schindler, Stewart & Zhao, JHEP 04, 178 (2022)

Quasi-TMDs pert. matching light-cone TMDs CS kernel

f̃ (x , bT, µ,Pz)√
Sr (bT, µ)

= H(µ, xPz)f (x , bT, µ, ζ) exp
[

1
2γζ(bT, µ) ln (2xPz)2

ζ

]
+ O

[
1

(xPzbT )2 ,
M2

(xPz)2 ,
Λ2

QCD

(xPz)2 + (x → 1 − x)
]

Soft factor

CS kernel extracted from ratio with different momenta P1 and P2

γζ(bT , µ) = 1
ln(Pz

1/Pz
2 ) ln

[
f̃ (x , bT, µ,Pz

1 )
f̃ (x , bT, µ,Pz

2 )

]
+ δγζ(x , µ,Pz

1 ,Pz
2 ) + p.c.

with δγζ(x , µ,Pz
1 ,Pz

2 ) compute from pert. matching kernel

Power corrections need to be under control → x away from 0 and 1
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Staple-shaped Operator

Operators for the gluon quasi-TMDs

Oµν,ρσ
g (b) = Gµν

(b
2

)
W adj

⊐ (b, l)Gρσ
(

−b
2

)
For the unpolarized case, four operators are

multiplicatively renormalizable

O(1)
g = O0i,0i

g , O(2)
g = O3i,3i

g

O(3)
g = 1

2(O0i,3i
g + O3i,0i

g ), O(4)
g = O3µ,3µ

g

⇒ renormalization cancelled in the ratio
Zhu et al, JHEP 02, 114 (2023)

Symmetry properties: by Hermiticity and translation invariance

Oµν,ρν
g (b) = [Oµν,ρν

g (b)]† = Oρν,µν
g (−b)

⇒ These operators are real and symmetric under b → −b
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Quasi-TMDs

Two observables can be used to compute the CS kernel on lattice

- Quasi-beam functions from 2pt and 3pt functions

B̃(bz , bT, ℓ,Pz) = ⟨h(Pz)|O(bµ, 0, ℓ)|h(Pz)⟩

- Quasi-TMD wavefunctions (WFs) from 2pt functions

ψ̃(bz , bT, ℓ,Pz) = ⟨0|O(bµ,−Pz , ℓ)|h(Pz)⟩

Staple-shaped operator O

For quark CS kernel, quasi-TMD WFs are used

- lower computational cost for 2pts

For gluon CS kernel, we prefer quasi-beam functions

- No quark disconnected contractions
- 3pts can be computed by correlating 2pts with gluon operator
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Workflow

CS kernel from ratio:

γζ(bT , µ) = 1
ln(Pz

1/Pz
2 ) ln

[∫
dbz

2π e ixPz
1 bz

N(Pz
1 ) lim

ℓ→∞
B̃(bz , bT , ℓ,Pz

1 )∆̃S(bT , l)∫
dbz

2π e ixPz
2 bz

N(Pz
2 ) lim

ℓ→∞
B̃(bz , bT , ℓ,Pz

2 )∆̃S(bT , l)

]

+ δγζ(x , µ,Pz
1 ,Pz

2 ) + p.c.
Quasi-soft factor ∆̃S (bT , l) is a Wilson loop

to remove the linear divergence ∼ l + bT

1. Position-space MEs
ℓ → ∞ extrapolation

2. x-space MEs
integral range bz

max

3. Ratio of MEs
with pert. matching


=⇒

CS kernel γζ(bT , µ)
(x ∼ 0.5 with p.c. under control)

=⇒ Repeat for each bT

1-loop matching for gluon available in

Schindler, Stewart & Zhao, JHEP 08, 084 (2022)
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Lattice setup

Calculation carried out on a single MILC ensemble:

L3 × T = 483 × 64, a = 0.12 fm, mπ = 148 MeV

Ncfg × Nsrc ≈ 470 × 16 (will be increased to ∼ 1000 × 256 → 30× more)

A. Bazavov et al. (MILC)
PRD 87 (2013) 054505

CS kernel is universal — independent of hadronic state

pion state is primary target (suppressed power corrections M2/(xPz )2)

nucleon state will also be studied at the same time

All multip. renormlizable operators calculated

11 values of ℓ ∈ [0.84, 3.48] fm to suppress finite-ℓ effect

4 values of Pz = 0.86, 1.29, 1.72, 2.15 GeV

Results shown below are with pion and O0i,0i (most precise)
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Position-space MEs

Step 1. extract MEs from 3pts
summation method used

ts −1∑
t=1

R(t, ts ) = ME · ts + c + · · ·
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Step 2. dependence on ℓ
mild finite-ℓ effect with linear div. removed

Step 3. MEs as function of bzPz

-10 -5 0 5 10

-0.05

0.00

0.05

0.10

0.15

0.20

bz Pz

B
(b
z
,
b T
,
P
z
)

bT  0.12 fm

nz  4

prelim

After averaging all staple orientations,
MEs are numerically real and symmetric
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Quark vs. Gluon

Comparison of quark and gluon cases

- bT = 0.12 fm, Pz = 4 × 2π
L = 0.86 GeV

- same number of measurements Ncfg × Nsrc ∼ 470 × 16

Quark: few % errors Gluon: 20 − 30% errors
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An order of magnitude more stats are needed to achieve a similar precision
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x-space MEs

Fourier transform to x -space

B̃(x , bT ,Pz) =
∫

|bz |<bz
max

dbz

2π e ixPz bz
N(Pz)B̃(bz , bT ,Pz)

- Dependence on bz
max

Fourier transformation is saturated for
Pzbz

max ≳ 5 with errors

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

Pz bmax
z

B
(x
,
b T
,
P
z
)

bT  0.12 fm

nz  4

x  0.5 prelim

- MEs as a function of x

tails outside physical range x ∈ [−1, 1]
are reduced as Pz increases
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Quark vs. Gluon

Quark and gluon x-space MEs have different symmetries

- Quark (with pion state)

Symmetric under x → 1 − x
momentum fraction of two quarks

- Gluon

nz  4

nz  6
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Symmetric under x → −x
Gluons are their own anti-particles

For gluon, even more stats are needed since the ratio is not taken around
the peak, and unfortunately signal lost at x ∼ 0.5 with current error

But meaningful results will be achieved with ∼ 30× more statistics
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Conclusion and outlook

CS kernel from quark to gluon:

In contrast to quark TMDs, gluon TMDs are almost unknown
(both experiments and lattice QCD)

Matrix elements have some different symmetry properties

Current statistics suggests that meaningful results can be achieved with
an order of magnitude more data — which is what we’re doing
(Ncfg × Nsrc ≈ 500 × 16 → 1000 × 256)

Thank you!
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Backup Slides



Rapidity divergence

Regulators such as dimensional regularization only regulate UV divergences

rapidity divergences arise in soft and collinear need a dedicated regulator

Ebert, Stewart & Zhao, JHEP 09, 037 (2019)
A concrete example

Idiv =
∫

dp+dp− f (p+p−)
(p+p−)1+ϵ

= 1
2

∫
d(p−/p+)

p−/p+

∫
d(p+p−) f (p+p−)

(p+p−)1+ϵ


