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Why long-range forces?
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Left hand cut close to threshold: the energy levels below the left-hand branch
point cannot be used

Slowly converging partial-wave expansion: expecting strong admixture of higher
partial waves in the quantization condition (Meng & Epelbaum, 2021)

Exponentially suppressed corrections still sizable

3 / 14



Plane-wave basis (Meng & Epelbaum, 2021)

Describe the system in terms of the parameters of the effective Lagrangian which,
by definition, encode only faraway singularities

Work in the plane wave basis; do not resort to the partial-wave expansion

For the NN scattering, it was shown that, at the physical quark masses, the
partial-wave mixing is sizable (Meng & Epelbaum, 2021)

A consistent fit of the DD∗ scattering phases to lattice data in the left-hand cut
region has been performed (Meng et al., 2023)
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Alternative approaches

Splitting long- and short-range interactions (Hansen & Raposo, 2023)

Fit short-range part to the scattering data, get full amplitude through solving
integral equations
Quantization condition is written down both in the plane-wave basis and the
partial-wave basis

Applying three-particle formalism to the DDπ system
(Hansen, Romero-Lopez and Sharpe, 2024)

Two-particle quantization condition for a stable D∗

Plane wave basis is used

Using Lüscher equation plus EFT with long-range force in the infinite volume
above the left-hand cut (Collins et al., 2024)

HAL QCD approach (Lyu et al., 2023)
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Modified effective range expansion (van Haeringen & Kok, 1982)

Lüscher equation is based on the assumption R ∼ M−1 ≪ L
. . . violated by a long-range force with a small M!

Splitting of the potential

V (r) = VL(r)︸ ︷︷ ︸
known, local

+ VS(r)︸ ︷︷ ︸
unknown

Effective-range expansion: very small radius of convergence

q2ℓ+1 cot δℓ(q) = − 1

aℓ
+

1

2
rℓq

2 + O(q4)

Define modified effective-range function:

KM
ℓ (q2) = Mℓ(q) +

q2ℓ+1

|fℓ(q)|2
(cot(δℓ(q)− σℓ(q))− i)
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Jost functions and all that

Jost function for the long-range interaction:

fℓ(q) =
qℓe−iℓπ/2(2ℓ+ 1)

(2ℓ+ 1)!!
lim
r→0

r ℓfℓ(q, r)

The function Mℓ(q):

Mℓ(q) =
1

ℓ!

(
− iq

2

)ℓ

lim
r→0

d2ℓ+1

dr2ℓ+1

fℓ(q, r)

fℓ(q)

Larger radius of convergence for the modified effective-range function:

KM
ℓ (q2) = − 1

ãℓ
+

1

2
r̃ℓq

2 + O(q4)

Relation between KM
ℓ (q2) and the full phase δℓ(q) is algebraic
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Requirements on the potential

The long-range potential VL(r) is local

The long-range potential must be superregular∣∣∣ lim
r→0

r−2ℓVL(r)
∣∣∣ < ∞

In case of Yukawa interaction, VL(r) =
ge−Mπr

r
−

2ℓ+1∑
i=1

ci
ge−Mi r

r

Mi ∼ M (heavy scale) , Mk
π =

2ℓ+1∑
i=1

ciM
k
i for k = 0, · · · , 2ℓ

The short-range potential is a low-energy polynomial:

⟨p|VS |q⟩ = C 00
0 + 3C 00

1 pq + C 10
0 (p2 + q2) + · · ·
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Scattering on two potentials: the EFT framework

T = TL + (1 + TLG0)TS(1 + G0TL)

TS = VS + VSGLTS

The Green function with the long-range potential only: GL = G0 + G0VLGL

GL = + + + · · ·
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The loop with infinite number of long-range insertions

〈GL〉 = + + + · · ·

⟨r |GL(q
2
0)|r ′⟩ = 4π

∑
ℓm

Yℓm(r)G̃ ℓ
L(r , r

′; q20)Y
∗
ℓm(r

′) , ⟨G ℓ
L(q

2
0)⟩ = lim

r ,r ′→0
G ℓ
L(r , r

′; q20)

Relation to the Jost functions:

⟨G ℓ
L(q

2
0)⟩ =

1

4π((2ℓ+ 1)!!)2
Mℓ(q0) + real low-energy polynomial in q20︸ ︷︷ ︸

renormalization prescription
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Modified effective range expansion: EFT framework

Lowest order: ⟨p|VS |q⟩ = C 00
0

4π/C 00
0︸ ︷︷ ︸

=KM
0 (q20) at lowest order

= M0(q0) +
q0

|f0(q0)|2
(cot(δ0(q0)− σ0(q0))− i)

Higher orders:

The quantity KM
0 (q20) is a low-energy polynomial in q20 , expressed in terms of

couplings C 00
0 ,C 00

1 ,C 10
0 , . . .

In the proof, the locality of VL(r) plays crucial role. The proof is not valid for a
general, non-local potential
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Modified Lüscher equation

det Aℓm,ℓ′m′ = 0 , Aℓm,ℓ′m′ = δℓℓ′δmm′KM
ℓ (q20)− Hℓm,ℓ′m′(q0)

Modified Lüscher zeta-function, finite volume:

H = + + + · · ·

Lüscher zeta-function

Hℓm,ℓ′m′(q0) =
4π

L6

∑
p,q

Y ∗
ℓm(p)⟨p|GL(q

2
0)|q⟩Yℓ′m′(q)

Taking into account the renormalization prescription:

Hℓm,ℓ′m′(q0) = (Hℓm,ℓ′m′(q0)− H∞
ℓm,ℓ′m′(q0)) +

1

4π
δℓℓ′δmm′Mℓ(q0)
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Analysis of data

Partial-wave mixing in a finite volume is expected to be significantly reduced

For a single partial wave:

Energy level → scattering phase at a given energy

A parameterization of phase shifts in a restricted energy interval is needed, if
partial-wave mixing is included.

Solution in the plane wave basis

Conceptually, very straightforward and transparent

Parameterization of the infinite-volume amplitude in terms of the effective
couplings is assumed in the whole energy range

Does the EFT expansion converge?

13 / 14



Conclusions, outlook

A novel quantization condition in the presence of the long-range forces has been
proposed

Solves the left-hand cut problem
Reduces partial-wave mixing
Relates the energy level to the scattering phase(s) at the same energy

Outlook:

Technical issues:

Efficient algorithm for the calculation of the modified Lüscher zeta-function
Moving frames

Long-range force in the three-body quantization condition

Electromagnetic interactions: is the non-perturbative resummation of the Coulomb
photon exchanges needed/possible?
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