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Muon g-2 experimental measurement

• Anomalous magnetic moment of the muon aµ = (g − 2)/2

• Fermilab results stand at 0.203 ppm!

Run-2/3 Result: FNAL + BNL Combination

8/10/23 James Mott: New Results from Muon g-261

aμ(FNAL) = 0.00 116 592 055(24) [203 ppb]

aμ(Exp) = 0.00 116 592 059(22) [190 ppb]

• FNAL combination: 
203 ppb uncertainty

• Both FNAL and BNL 
dominated by 
statistical error

• Combined world 
average dominated 
by FNAL values.
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Theoretical framework

Figure 1: The quark connected diagram
contributing to the HVP
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Two-point correlation function

• 2-point current-current function

C(t) =
1

3

∑
x⃗,i

⟨J i(x⃗, t)J i(0)⟩ = 1

3

∑
x⃗

〈
M−1

0,xγµM
−1
x,0γν

〉
(2)

• Here, Jµ(x) = [ψ̄γµψ](x) is the electromagnetic current.
• On the lattice this current is not conserved, so we use a point-split current

that is exactly conserved,

Jµ(x) =
1

2
ηµ(x)(χ̄(x+ µ̂)U†

µ(x)χ(x) + χ̄(x)Uµ(x)χ(x+ µ̂))
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Motivation

From the spectral decomposition of the propagator

S(x, y) =
∑

λ≤λlow

⟨x|λ⟩ ⟨λ|y⟩
λ

+
∑

λ>λlow

⟨x|λ⟩ ⟨λ|y⟩
λ

= SL + SH

we separate C(t) into four parts: low-low, low-high, high-low, and
high-high[Giusti et al. 2004].

Cµν(t) =
∑
x,y

Tr γµG(x, y)γµG(y, x) = CLL + CLH + CHL + CHH (3)

In the previous work [Aubin et al. 2020; Aubin et al. 2022], C(t) was just divided into
pure low-mode and the rest.
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Figure 2: The integrand (w(t)C(t)) in Eq. (1). No LMA (left), total (middle), LMA
only (right).

• In previous work, we used LMA for noisy long-distance part of the
correlator.

• LL part yields full-volume average for both source and sink points.
• The rest (HL+LH+HH) averaged over small number of source points.
• LL part has smaller fluctuations compared to the total (Fig. 2).
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Algorithm improvements: High-Low contribution

• Now, we would like to compute HL part separately instead of together
with the HH1.

• The high-low contribution is

CHL =
∑
n

∑
y

⟨n|y⟩Uν(y)GH(y + ν̂, x+ µ̂)U†
µ(x)

⟨x|n⟩
λn

+ 3 other terms (4)

1We thank Simon Kuberski and the Mainz group for discussions
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Combining eigenvectors with random coefficients

The calculation of the low-high part is still expensive (NT ×Nlow sources).
To dramatically reduce the cost,

• we combine low-mode sources on a time-slice using unique random
numbers for each mode.

• Contract at the sink with the same random numbers to eliminate
unwanted cross-terms on average.(

r0√
λ0

⟨0|+ r1√
λ1

⟨1|
)(

r0√
λ0

|0⟩+ r1√
λ1

|1⟩
)

=
r20
λ0

⟨0|0⟩+ r21
λ1

⟨1|1⟩

+
r0r1√
λ0λ1

(⟨0|1⟩+ ⟨1|0⟩)︸ ︷︷ ︸
crossterms

= Cexact (∵ r2i = 1, ⟨rirj⟩ = δij)

λi = eigenvalues of Dirac operator
• This adds random noise which can be reduced by doing more “hits” with

additional random-sources.
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Results

mπ (MeV) a (fm) size L
configs
(LL-HL-HH)

130 0.087 643 × 96 5.62 31-31-31
134 0.042 1443 × 288 6.048 6-18-27

• Reduced NT ×Nlow solves to
NT ×Nhits solves

• 8000 low modes were used.
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• Error from high-low part error is suppressed from low-low errors.
• Our current method with just “1 hit” shows an improvement of 8% and

with “10 hits” 17.3% in the long distance window (2.6-3.4 fm)
• Low-low part error dominates in the total!
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Algorithm improvements: Low-Low contribution

• The low-low part of the correlation function is

CLL =
∑
m,n

∑
x⃗

1

λmλn
Λ†

µ(x)mnΛ
†
ν(y)nm + · · · (5)

the meson field defined as

(Λµ(t))n,m =
∑
x⃗

⟨n|x⟩Uµ(x) ⟨x+ µ|m⟩

• This scales linearly in the size of the eigenvectors and quadratically with
the number of eigenvectors (N3

S ×NT )
• To have a significant speedup, we “sparsen” the eigenvectors.
• As a full volume average may be wasteful as nearby points will be almost

100% correlated on a fine lattice.
• We sparsen randomly to choose the location for the hypercube on a

timeslice.
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Figure 3: Low-low contribution from contracting the meson fields

• For the demonstration purpose, we have used 800 low modes on
1-configuration.

• Sparsening by (s, t) reduces the number of eigenvectors required to
compute our meson fields from N3

S ×NT to (NS/s)
3 × (NT /t).
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Preliminary results on 1443 × 288 ensemble
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Aubin, et al., 2022
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aµ × 1010 window (t0, t1,∆) (fm)
207.24(34) (0.4, 1.0, 0.15)
94.57(88) (1.5,1.9,0.15)

• Intermediate window quantity:

aµ = 2

T/2∑
t=0

C(t)w(t) (Θ(t, t0,∆)−Θ(t, t1,∆))

with, Θ(t, t′,∆) = 1
2

(
1 + tanh t−t′

∆

)
• Errors shown are Statistical
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Summary

• The new method reduces the statistical noise in the long-distance part of
the two-point correlation function.

• The added expense of separately computing HL is a trade-off for
improving the errors in this region and using fewer sources for the HH part
(which now doesn’t have the extra noise of the HL contributions).

• Physical point calculations nearly complete at a = 0.087 fm.
• And a = 0.042 fm calculations are in progress.
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• Highly-improved staggered quark (HISQ) ensemble from the MILC
collaboration with the HPQCD value w0 = 0.1715(9) fm

TABLE I. Ensemble parameters used in this work. The first column lists the approximate lattice

spacings in fm. The second column gives the spatial length L of the lattices in fm. The third

column lists the volumes of the lattices in number of space-time points. The fourth column gives

the sea-quark masses in lattice-spacing units. The fifth column lists the ratios of the gradient-flow

scale w0 [18]. To convert simulation results to physical units, we take w0 = 0.1715(9) fm from

Ref. [19]. The final column gives the taste-Goldstone pion masses [20]. Pion masses moved, to

table 2, do we want them here too?

⇡ a/fm L/fm N3
s ⇥ Nt amsea

l /amsea
s /amsea

c w0/a

0.15 4.85 323 ⇥ 48 0.002426/0.0673/0.8447 1.13227(18)

0.12 5.81 483 ⇥ 64 0.001907/0.05252/0.6382 1.41060(28)

0.09 5.61 643 ⇥ 96 0.00120/0.0363/0.432 1.95148(41)

0.09? 5.61 643 ⇥ 96 0.001326/0.03636/0.4313 1.95021(57)

0.06 5.45 963 ⇥ 128 0.0008/0.022/0.260 3.01838(92)

0.04 6.12 1443 ⇥ 288 0.000569/0.01 555/0.1827 4.03242(195)

⇡ a/fm L/fm N3
s ⇥ Nt amsea

u /amsea
d /amsea

s /amsea
c w0/a

0.15? 4.85 323 ⇥ 48 0.001524/0.003328/0.0673/0.8447 1.13227(18)

HISQ action [22] for the sea quarks, a Symanzik-improved gauge action [23–27] that includes
the plaquette, the 1⇥2 rectangle, and the so-called bent-chair 6-link term for the gluon fields
as well as tadpole improvement [28] based on the plaquette. Details of the configuration
generation can be found in Ref. [29].

Our physical mass ensemble set, shown in Table I, includes five lattice spacings spanning
the range a ⇡ 0.15–0.04 fm. The tuned quark masses listed in Table I are determined
from the analysis in Ref. [14], in which pseudoscalar-meson masses and decay constants
were computed using 24 gauge ensembles with six lattice spacings ranging from a ⇡ 0.15
to 0.03 fm. Aside from the 0.09 ensemble, all the ensembles we use are well tuned to the
physical pion mass, including a re-tuned ‘0.09?’ ensemble (see footnote 1). The strange- and
charm-quark tuning is also all within 1% of the physical values. The measured pseudo-scalar
masses on each ensemble are given in Table II. The isospin-symmetric results for the pion,
K and Ds mesons are used to tune the isospin symmetric point described in Sec. II B. The
isospin-broken results are used in the calculation of �aud

µ (SIB).
The vector-current correlation function datasets generated on each ensemble for each

of the contributions in Eq. (2.7) are shown in Fig. 2. In the figure, circles correspond
to correlation function data constructed from propagators computed using the truncated
solver method (TSM) [32, 33]. Using random-wall sources, we compute one fine-residual
conjugate gradient solve and a number of loose-residual solves (Nloose). The size of the circle
corresponds to total number of statistics Ncfg ⇥ Nloose. The exact numbers for these, for
each contribution, is detailed in the respective sections in Sec. III. The squares correspond
to correlation function data which has been improved using exact eigenvectors and no TSM
applied. write something about LMI/LMA etc here. Why no TSM+LMI. Also specify how
the disconnected data is generated. Again, the size of the square corresponds to the total
statistics, with specific numbers given in relevant sections in Sec. III. Two vector current
discretizations are employed in this work, the local and one-link currents, corresponding to
the taste-vector and taste-singlet. The solid shapes are datasets generated using the local
current while hatched shapes are generated using the one-link current. In the case of the

8
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