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Learning as Dyson Brownian motion
The training dynamics of weight matrices in learning algorithms can be > The role of the hidden layer is to regulate the speed of the eigenval-
understood as a Dyson Brownian motion, hence featuring characteristics of ues
random matrix theory [1].
> W ¢ RM*& weight matrix in a neural network 1|
> The matrix update rule can be written as
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where the second term on the rhs is the deterministic part and the [ o X
third reflects stochasticity, « is the learning rate and 5 the batch.
> |t is possible to study the symmetric matrix X = WTW. From the > The Wigner's surmise Is found for N = 2 and its universality is
update rule for W, it follows this dynamics for the eigenvalues of X: checked for NV = 10 with 4 doubly-degenerate eigenvalues
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> Stationary distribution: Coulomb gas (derived from Fokker-Planck

equation) N
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with Z = [ [], dz;Ps(z;) and K; = d‘gagi)

> The two-component spectral density is a better fit than the Wigner's
semicircle in presence of the hidden layer

Wigner’s surmise and Wigner’s semicircle

We consider the case NV = 2 and assume that the potential can be writ-
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ten as V(zy,22) = 5% + 5= 2, where z; and z, are centered around the
1

degenerate eigenvalue «.

> Partition function Z = g [ dzidas |2y — agle 271 272

> Transformation: S = x1 — 29, = ax1 + Bre

i -
5.97 5.98 5.99 6.00 6.01 6.02 5.94 5.96 5.98 6.00 6.02 6.04 6.06 6.08

> o« and 3 are such that the exponent can be written as AS? + Bx?

52 > When Z = 1, i.e. there is no hidden layer, the Wigner's semicircle is

> Probability of separation P(S) = 1+ Se 2i+d found

> We can introduce s = gy such that (s) = 1

> P(S)dS = P(s)ds = P(s) = 5se” 5

> Spectral density p(x) = <% Zf\le O(x — xi)>, x,; eigenvalues
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In case o; = o3, the function is called Wigner’s semicircle Conclusions and outlook
Conclusions

| > In the TS model that we examined, the hidden layer regulates the
Dataset D = {x;,yi}, i = 1,..., Nsamples speed at which the eigenvalues are moving

Teacher: y; = ZWx; > This leads to a generalized form of the Wigner's semicircle for the

Student: yored.i = ZWoredX; spectral density, while keeping intact the Wigner's surmise

x; € RV ~ N(0,1), W, Wpeq € RV Next steps

7 < RVXN fixed matrix for both the teacher and the student > Collect larger statistics to show the linear scaling rule

1 Nsamples 2 > Include the effect of activation functions
2 Nsamples Zz‘:l i (yi — Ypred)

Woyred Optimized by minimizing £ =

§ U
We can use the singular value decomposition (SVD) Wy = Study the infinite-width limit

UTV?! to write the eigenvalue dynamics > |et the hidden layer be learnable and add multiple layers
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