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Learning as Dyson Brownian motion

The training dynamics of weight matrices in learning algorithms can be
understood as a Dyson Brownian motion, hence featuring characteristics of
random matrix theory [1].

▷ W ∈ RM×N weight matrix in a neural network

▷ The matrix update rule can be written as
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where the second term on the rhs is the deterministic part and the
third reflects stochasticity, α is the learning rate and B the batch.

▷ It is possible to study the symmetric matrix X = WTW. From the
update rule for W, it follows this dynamics for the eigenvalues of X:
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Diffusion term

▷ Stationary distribution: Coulomb gas (derived from Fokker-Planck
equation)
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Wigner’s surmise and Wigner’s semicircle

We consider the case N = 2 and assume that the potential can be writ-
ten as V (x1, x2) =
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, where x1 and x2 are centered around the

degenerate eigenvalue κ.

▷ Partition function Z = 1
N0
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▷ Transformation: S = x1 − x2, x = αx1 + βx2

▷ α and β are such that the exponent can be written as AS2 +Bx2

▷ Probability of separation P (S) = 1
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▷ We can introduce s = S
⟨S⟩ such that ⟨s⟩ = 1

▷ P (S) dS = P (s) ds =⇒ P (s) = π
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4 Wigner’s surmise

▷ Spectral density ρ(x) =
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In case σ1 = σ2, the function is called Wigner’s semicircle

Teacher-Student model
▷ Dataset D = {xi,yi}, i = 1, . . . , Nsamples

▷ Teacher: yi = ZWxi

▷ Student: ypred,i = ZWpredxi

▷ xi ∈ RN ∼ N (0,1), W,Wpred ∈ RN×N

▷ Z ∈ RN×N fixed matrix for both the teacher and the student

▷ Wpred optimized by minimizing L = 1
2Nsamples
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▷ We can use the singular value decomposition (SVD) Wpred =
UΨVT to write the eigenvalue dynamics

dxi

dt
= −α(Z̃T Z̃)ii xi + C(t),

with Z̃ = VTZ and C(t) = α(Z̃T Z̃VTXV)ii

Results
▷ The role of the hidden layer is to regulate the speed of the eigenval-

ues

▷ The Wigner’s surmise is found for N = 2 and its universality is
checked for N = 10 with 4 doubly-degenerate eigenvalues

▷ The two-component spectral density is a better fit than the Wigner’s
semicircle in presence of the hidden layer

▷ When Z = 1, i.e. there is no hidden layer, the Wigner’s semicircle is
found

Conclusions and outlook
Conclusions

▷ In the TS model that we examined, the hidden layer regulates the
speed at which the eigenvalues are moving

▷ This leads to a generalized form of the Wigner’s semicircle for the
spectral density, while keeping intact the Wigner’s surmise

Next steps

▷ Collect larger statistics to show the linear scaling rule

▷ Include the effect of activation functions

▷ Study the infinite-width limit

▷ Let the hidden layer be learnable and add multiple layers
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