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What is your favorite lattice Dirac operator



What is your favorite lattice Dirac operator
when you want to understand the index theorem?



What is your favorite lattice Dirac operator
when you want to understand the index theorem?

Overlap Dirac operator [Neuberger 1998] would be the
most popular answer: realizes an “exact” chiral symmetry

S = Zq Doyq(x qg — 6ia75(1_aD0”)q, g — Ge'>7s.

through the Ginsparg-Wilson relation and reproduces the
anomaly.  pos s exp [2iaTr(vs + 75(1 — aDyy))/2] Dad

aD,,
The index is well-defined: IndD,, = Trvys (1 > )

[Hasenfratz et al. 1998]



The overlap Dirac operator index

a :lattice spacing

Overlap Dirac spectrum lies on a ‘
DO’U

circle with radius 1/a | T
Complex eigenmodes form =+ pairs of /—\

aD,, -

V5 (1 2 ) O U !

(therefore, no contribution to the trace).
The real 2/a (doubler poles) do not contribute.

DO’U
TTys (1 ¢ )z Ir s

2 zero-modes




But D,, is defined with the Wilson Dirac operator.

1
Dov — E (1 —+ fy5sgn(HW)) HW — ’}/5(DW — M) M — 1/&

Do, 1
. > S —§Tr sgn(Hy )

=0



But D,, is defined with the Wilson Dirac operator.

1
Dov — E (1 —+ fy5sgn(HW)) HW — ’}/5(DW — M) M — 1/&

D,, 1
IndD,, = Tr~s (1 _ 4 > = Tr% —§Tr sgn(Hwy )

2
N——"
=0

1
= —§Tr sgn(Hwyy )

What is this ???



n invariant of the massive Wilson Dirac operator

1
—5Trsgn(Hw) = 3 Z sgn(Ary, ) = ——n(Hw)

)\HW

Hw =vs(Dw — M) M =1/a

This quantity is known as the Atiyah-Patodi-Singer n invariant
(of the massive Wilson Dirac operator).

[Atiyah, Patodi and Singer, 1975]



The Wilson Dirac operator and K-theory

1 (D —
ndD,, = —~n(Hy ) Hw = 25(Dw = M)
2 M =1/a

In this talk, we try to show a deeper mathematical
meaning of the right-hand side of the equality,

and try to convince you that the massive Wilson Dirac
operator 1s an equally good or even better object than
D,, to describe the gauge field topology

IN terms of K-theory [Atiyah-Hilzebruch 1959, Karoubi 1978--]
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Main theorem
‘Aoki, F, Furuta,Matsuo, Onogi, Yamaguchi, arXiv:2407.17708]

~or any K*'(I,0I) group element defined by

[7—[ ¢ 75(1) o+ m)] [ . ] means those with the same
cont.» cont.

spectral flow between
. . . . - . m c [_Ma M]
Its lattice approximation at sufficiently
small lattice spacings,
[Hlat.y ’75(DW + m)]
belongs to the same K! group element
= sufficient condition for having the same index.
[Cf. Yamashita 2021, Kubota 2020]
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Eigenvalues of continuum massive Dirac operator

H(m) — 75(Dcont. + m)

For Deont. =0, H(m)p=ysmo= _+ mo.
chirality
For Deont.d #0, {H(m), Deont.} = 0.

The eigenvalues are paired: H(m)dx = Amoda
H(m)DCOnt-¢>\m — _)\chont.qS)\m
2

As H(m)> = —-D2? __+m? ,wecanwritethem A, = \/)\0 + m?




Spectrum of H(m) = v5(Dcont. +m)

é )\m:::\/)\%+m2
Ay, = —M ' m

n_ modes - ng modes




Spectral flow = Atiyah-Singer index = n invariant

"+ =# of zero-crossing eigenvalues from - to + H(m) = v5(Deont. + m)
1 _ = # of zero-crossing eigenvalues from + to -

N, — n_ =:spectral flow of H(m) m e [-M, M]

Equivalent to the eta invariant: whenever an eigenvalue

crosses zero, reg  reg
n(H(m)) jumps by two. n(H) = Z—Z
| ! A>0  A<O
Sn(H(M)) ~ (H(-M)) =ns —n_.

Pauli-Villars subtraction



Suspension isomorphism in K theory

Ay, = —M

s ——

n_ modes

Massless=

counting index _M/

by points

%

Am —i\/)\2+m2
—
/ N4 modes .
T Massive=
\?M counting

index by lines

K" (pt) ~ Kl(I O1)

With ch|raI|ty operator

line=interval

Without chirality operator

=> The two definitions of the index agree.



With chiral symmetry breaking regularization (on a lattice),
counting points (massless) is difficult but counting lines
(massive) still works.

Standard ; A, ! Eta invariant:

. e, o . : | — i .
deﬁnmc’)n. — — It m M points
Where is § / are gapped, we
m=07? \ / can still count the
What are zero \{ f _ crossing lines.
modes? / m

:/__\E Note) this fact is known even before
overlap Dirac by Itoh-lwasaki-Yoshie
é§: 1982 ap:ld otheryliterature, but its

mathematical meaning was not
discussed. See also Adams, Kikukawa-
Yamada, Luescher, Fujikawa, and Suzuki
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Dirac operator in continuum theory

E : Complex vector bundle
Base manifold M: 2n-dimensional flat torus T2"

Fiber F : vector space of rank r with a Hermitian metric
Connection : Parallel transport with gauge field A,L-

D : Dirac operator on sections of E

Decont. = 7i(0; + A;)
Chirality (Z, grading) operator: 7/ — P H Vi

{7, D} =0,{v,7} =0.



Wilson Dirac operator on a lattice

We regularize T?" is by a square lattice with lattice spacing @a
(The fiber is still continuous.)
We denote the bundle by F'%and

link variables :

Qa
Note: In our paper, we
. /
Uk (CU) =P EXP |1 Ak (CU )dl ] consider "generalized
0 link variables” to
determine the gauge

f b fields both in
D — E ,Y’L V’L + VZ _a vab continuum and on a
4 9 92 t lattice simultaneously.
)

] But the standard Wilson
Wilson term line works, too.

aVip(@) = Ui(@))(z + e;) — ()
avgw(w) = (x) — U;f(a: —e;)Y(x — €;)



Definition of K*(I,0I) group
Let us consider a Hilbert bundle with
Base space [ = range of mass [-M, M]
boundary @1 = £M points
Fiber space { = Hilbert space to which D acts
D, :one-parameter family labeled by m.

We assume that D—:M has no zero mode.

The group element is given by equivalence classes of the pairs:
[(7—[, Dm)] having the same spectral flow.
Note: K! group does NOT require any chirality operator.



Definition of K*(I,01I) group
Group operation: (1, D}, )} & (2, D3] = (1! & 42, O
Identity element: [(H, Dy, )] |Spec.ﬂOW:O

We compare [(Heont.; V(Deont. +m))] and [(Hiat., ¥(Dw +m))]
taking their difference, and confirm if the lattice-continuum combined

Dirac operator o ( V(Dcont. —I—m) £, )
fa —y(Dw + m)

%
has Spectral flow =0 where fa fa are “mixing mass term” with
some “nice” mathematical properties (see our paper for the details).



Main theorem

Consider a continuum-lattice combined Dirac operator

f) _ ( V(Dcont. + m) tfa >
tfq —y(Dw + m)

on the path P:




Main theorem

There exists a finite lattice spacing agsuch that forany a < ag

ﬁ _ ( ’Y(Dcont. + m) tfa, )
tfq —y(Dw + m)

is invertible (having no zero mode) on the staple-shaped path P
[which is a sufficient condition for Spec.flow=0]

= Y(Decont. + ™M), Y(Dw + m) have the same spec.flow

= Sn(3(D = M)V = (3 (Dy — M)

The continuum and lattice indices agree.



Proof (by contradiction)

Assume f) . ( V(Dcont. =+ m) tfa )
tfa —(Dw + m)

has zero mode(s) at arbitrarily small lattice spacing.
= For a decreasing series of {ij}

< V(Dcont. _|_mj) t%faj ) ( Uy ) — (0
tjfa, —v(Dy +m;) vj

is kept.



Continuum limit

1
Multiplying ( f ) and taking the continuum limit
a;

’V(Dcont. + moo) too Uoo _ O
too _V(Dcont. + moo) Voo

U (V)
is obtained. 07 o0 are

L% weakly convergent
~2 2 2 2 _
Doo:Dcont._l_moo_l_too -
requires

Moo = too = 0.

2
L strongly convergent
(Rellich’s theorem)

Contradiction with m? 1 2 >0 along the path P.



What not shown in this talk

Because of time limitation, we cannot explain the following details.

* Themap f,, f; between lattice and continuum Hilbert spaces
e Convergenceof fu.f, — 1, f>fo— 1.

« Convergenceof f Dw fo — Decont.

* Elliptic estimate for the Wilson Dirac operator

* Relich theorem

Please see our paper [S. Aoki, HF, M. Furuta, S. Matsuo, T. Onogi, S. Yamaguchi, arXiv:2407.17708 ] or
invite us to your (online) seminar.
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Wilson Dirac operator is equally good as D, to
describe the index.

1 1
IIldDOfU — —577(HW) — _577(’75(Dcont. — M)) — Inchont.
t t
By K theory for Suspension
sufficiently small Isomorphism

lattice spacings



Wilson Dirac operator is equally good as D, to
describe the index.

1 1
IIldDOfU — —577(HW) — _577(’75(Dcont. — M)) — Inchont.
t t
By K theory for Suspension
sufficiently small Isomorphism

lattice spacings

Or even better?



Application to the manifold with boundaries

Periodic b.c.

1 1
IndDOU — _577(HW) — _577(’75(Dcont. — M)) — Inchont.

Dirichlet b.c. (Shamir domain-wall fermion) we can show

1 1 con con
—51(Dpw) = =5n(v(Dpw)) 5 Indaps D™
4 t
[perturbative evidence F, Kawai, Matsuki, [HF, plenary talk at Lat21].

Mori, Nakayama, Onogi, Yamaguchi 2019].

But the overlap Dirac is missing because Ginsparg-Wilson
relation is broken by the boundary [Luescher 2006].



Real Dirac operators and the mod-two index

For general complex Dirac operators,
1 1
K'(1,01) W —on(Hw) = =5n(vs(D — M))
For real Dirac operators, for example, in SU(2) gauge
theory iIn 5D (origin of Witten anomaly), WE will be able to show
1 Dyw — M 1 Deont. — M
KOl(l, 81) » 5 [1 — sgn det (DW +M>] =3 [1 — sgn det (Dcont. +M)]

— Indmod —twoDcont.

But there is no overlap counterpart.
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Summary

1
IndD,, = —577(HW)

HW — ’)/5(DW — M)

We have shown a deeper mathematical meaning of the
right-hand side of the equality,

and that the massive Wilson Dirac operator is an equally
good or even better object than D,, to describe the

gauge field topology In terms of K-theory [Atiyah-Hilzebruch
1959, Karoubi 1978---]




Summary

1 1
IﬂdDOU — _577(HW) — _577(75(190011’5. — M)) — Inchont.
Hy = v5(Dw — M)
We have shown a deeper mathematical meaning of the
right-hand side of the equality,

and that the massive Wilson Dirac operator is an equally
good or even better object than D,, to describe the

gauge field topology In terms of K-theory [Atiyah-Hilzebruch
1959, Karoubi 1978---]




Backup slides



Elliptic estimate

In continuum theory, Forany ¢ & F(E) and i,

a constant c exists such that

[Digl|* < c(l]]” + [1Do][7)

When a covariant derivative is large. D is also large.

This property is nontrivial on a

V7 9]12 < e(||9)

attice.

“+ |[Dwoll*)

Doubler modes have small Dirac eigenvalue with large wave

number.

-> Wilson term is mathematically important, too!



Ja
fa, : Hlat. N Hcont.

X

From finite-dimensional vector bundle on a discrete lattice
we need to make infinite-dimensional vector bundle on
continuous x :

fad™(z) = ) Blz —)P(z — 1)¢"™" (1)
leCy
Cx : a hyper cube containing XL . [ :lattice sites

P(x — 1) = Pexp [z/ dx’iAi(:I:’)] Wilson line.
l

5(37 — l) : linear partition of unity s.t.

B(0) =1,8(1,) =0, > A=) =

leCy,



fa
f* ) Hcont. N Hlat.
a -

|s defined by

fap®or(l) = / dyB(l —y)P(l — )¢ (y)

yel|

>k
Note) fa fa is not the identity but smeared to nearest-
neighbor sites. (The gauge invariance is maintained by the
Wilson lines.)



Continuum limit of f; f.

lat.
1. For arbitrary ¢a

lim f,¢"" weakly converges to a gbcom - L%

a—0
where L1 is the square-integrable subspace of H <"

to the first derivatives.
2. lim f,v(Dw + m)¢1at' weakly converges to
a—0

’Y(D _|_m) cont. c L2
3. There exists c st || f Fait — gblat-H%2 < Ca,2H¢lat'H%%

4. Forany ¢ ¢ L?, hm fafugeon
weakly converges to ¢Con E L? and

hm faf ¢cont L cont



What are the weak convergence and
strong convergence?

The sequence U; weakly convergesto Voo
when for arbitrary W

lim ((v; — Vo), w) = 0.
J—>00

Note) hm V; — Voo )(x) = lim e™*®

k— 00

is weakly convergent.

2 _
Strong convergence means ]EBO ij o UOOH = 0.

Relllch’s theorem:

2
Ll Weakconvergence— L convergence



