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False Vacuum Decay

e Consider a field theory in which the potential has two local minima.
e.g.
1
L(x) = 5(0:6(x))* + V[6(x)]

e The higher minimum gives a semi-stable “false vacuum” state.

e In the quantized theory, the false vacuum decays to the true vacuum.



False vacuum decay is relevant to:

The Standard Model (the vacuum may be unstable)

The Schwinger mechanism (field decay through pair production)

Cosmology (the original inflation model involved false vacuum decay)

Condensed matter systems



Current Approaches

e The standard approach is the semi-classical approximation
e Recently, two lattice methods were proposed *

e These methods were tested on 1D quantum mechanics with the hope
of generalizing to field theory.

e Why a new approach?

Semi-classical approximation does not always work well.

The first lattice method struggles with small decay rates.

The second lattice method requires extrapolation to large volumes.
e An new, independent lattice method could serve as a cross-check.

1Jiayu Shen, Patrick Draper, and Aida X. El-Khadra. Vacuum decay and Euclidean
lattice Monte Carlo. Phys. Rev. D, 107(9):094506, 2023. doi:
10.1103/PhysRevD.107.094506.



Challenges of Using Monte Carlo for False Vacuum Decay

e Sampling problem: It is difficult to correctly sample configurations
for Monte Carlo simulation.

e Statistics problem: Even with perfect sampling, the signal is
exponentially suppressed.

e Inverse problem: To go from imaginary to real time, we need to do
an inverse Laplace transformation.



1D Quantum Mechanics Problem

e We will be dealing with a potential of the form shown below
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Sampling Problem: Dynamic Constraints

e Consider the potentials below.
e The orange line is Vry and is identical to Vf in the false vacuum.

e The blue line is Vv and is identical to V4 in the true vacuum.
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Sampling Problem: Dynamic Constraints

Procedure:

e Start with sum over all states.

e Evolve with Hry = K + Vey (projects false vacuum “ground state”)
e Evolve with Hey = K + Vs (allows transitions)

e Evolve with Hry = K + Vv (projects configurations that transition)
e Evolve with Hgy = K + Vi (allows transitions)

Tr e_HfuII te—HTv trv e_Hqu te—HthFv
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Sampling Problem: Ratios

e To get the decay rate, we need the ratio

Tr [e— Hrunt g —Hrvtry g —Hint o —Hev tFV:|

Tr |:e_Hqu te—Hrvitrv e—Hrunt g—Hrv th:|

e |t is very difficult to directly calculate this ratio.

e However, we can split this ratio into sub-ratios:

Tr|:...e_HTVtTV...:| Tr|:...e_H1tTV...:| Tr|:...e_H"tTV...:|

Tr|:...e*H1tTv...:| . Tr|:...e*H2tTv...:| ..-Tr|:...e*HFVtTV...:|

The intermediate Hamiltonians H; transition smoothly between Hry
and HF\/.

This solves both the sampling and statistics problems.



Inverse Problem: Fermi’s Golden Rule

e We can relate the ratio

Tr [e* Heun to— Hrvtry e*Hfuu t e*HFv tFV:|

—Hrunt g—Hrvtry g—Hrunt g —Hev try
rie @ e e

to the decay rate using Fermi's Golden Rule (FGR).
e To use FGR, we need information on the energy spectrum.
e Finding the full spectrum is equivalent to the inverse problem.

e However, for FGR, we only need the spectrum at the energy of the
false vacuum.

e This allows us to try simple ansatz to approximate the spectrum.

e This procedure works when the false vacuum energy is not too big.



We use the same action as Shen et al. [2023]
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Appendix: Fermi’'s Golden Rule




Appendix: Fermi’s Golden Rule

e One way to calculate decay rates is Fermi's golden rule:

r—= Z 216 (Em — Erv)|(6ml V|‘PFV>‘2

= 27 (prv|VO(Hsep — Erv) V]rv).
Hsep is @ Hamiltonian such that the FV and TV are separated.
V is defined so that H = Hsep + V.
®m are eigenstates of Hep in the TV.

©Fv is the lowest eigenstate of Hiep in the FV.
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Appendix: Fermi’s Golden Rule

e We can show that
<ql)‘e*HFVthe*er*HTvtTve*Hte*HvaFvW)>

<1/}‘ e—Hrv(2try+2t+trv) |1/)>

t t
:/ dtl/ dty (FV|VTe~(Hv=Erv)(tvinate) y|py)
0 0
e We want to calculate

(Prv|VO(Hsep — Erv) V]prv).

e Define
t t
p(E) = / dt; / dty (FV|VT§(Hry — E)e™ (Hv—Er)(tvititta) y | py)
0 0
e Then
t t
p(EFV):/ dtl/ dt> (FV|VT§(Hry — Epy) V|FV)
0 0

= t2(FV|V1§(Hrv — Erv) V|FV)
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Appendix: Fermi’s Golden Rule

e We want
<'(/J|e_HthFVe_Ht6(HTV _ E)e—HTVtTVe—er—HFVtFV|r(/}>
p(E) = <w|eprv(2tpv+2t+tTv)|w>
e But we can only calculate

<¢|e—HvaFv e—Ht g—Hrvitry g—Ht o —Hrvitey |,(/}>
/ dEp(E) = <w|e*HFV(2th+2t+fTv) |1/)>

But we can also calculate the moments

/dE Ep(E) and /dE E?p(E).

e If we assume p(E) has a Gaussian distribution, we can calculate it.
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