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False Vacuum Decay

• Consider a field theory in which the potential has two local minima.

e.g.
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• The higher minimum gives a semi-stable “false vacuum” state.

• In the quantized theory, the false vacuum decays to the true vacuum.
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Motivation

False vacuum decay is relevant to:

• The Standard Model (the vacuum may be unstable)

• The Schwinger mechanism (field decay through pair production)

• Cosmology (the original inflation model involved false vacuum decay)

• Condensed matter systems
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Current Approaches

• The standard approach is the semi-classical approximation

• Recently, two lattice methods were proposed 1

• These methods were tested on 1D quantum mechanics with the hope

of generalizing to field theory.

• Why a new approach?

• Semi-classical approximation does not always work well.

• The first lattice method struggles with small decay rates.

• The second lattice method requires extrapolation to large volumes.

• An new, independent lattice method could serve as a cross-check.

1Jiayu Shen, Patrick Draper, and Aida X. El-Khadra. Vacuum decay and Euclidean

lattice Monte Carlo. Phys. Rev. D, 107(9):094506, 2023. doi:

10.1103/PhysRevD.107.094506.
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Challenges of Using Monte Carlo for False Vacuum Decay

• Sampling problem: It is difficult to correctly sample configurations

for Monte Carlo simulation.

• Statistics problem: Even with perfect sampling, the signal is

exponentially suppressed.

• Inverse problem: To go from imaginary to real time, we need to do

an inverse Laplace transformation.
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1D Quantum Mechanics Problem

• We will be dealing with a potential of the form shown below
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Sampling Problem: Dynamic Constraints

• Consider the potentials below.

• The orange line is VFV and is identical to Vfull in the false vacuum.

• The blue line is VTV and is identical to Vfull in the true vacuum.
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Sampling Problem: Dynamic Constraints

Procedure:

• Start with sum over all states.

• Evolve with HFV ≡ K + VFV (projects false vacuum “ground state”)

• Evolve with Hfull ≡ K + Vfull (allows transitions)

• Evolve with HTV ≡ K +VTV (projects configurations that transition)

• Evolve with Hfull ≡ K + Vfull (allows transitions)

Tr
[
e−Hfullte−HTVtTVe−Hfullte−HFVtFV

]
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Sampling Problem: Ratios

• To get the decay rate, we need the ratio

Tr
[
e−Hfullte−HTVtTVe−Hfullte−HFVtFV

]
Tr
[
e−Hfullte−HFVtTVe−Hfullte−HFVtFV

]
• It is very difficult to directly calculate this ratio.

• However, we can split this ratio into sub-ratios:

Tr
[
· · · e−HTVtTV · · ·

]
Tr
[
· · · e−H1tTV · · ·

] ·
Tr
[
· · · e−H1tTV · · ·

]
Tr
[
· · · e−H2tTV · · ·

] · · ·
Tr
[
· · · e−HntTV · · ·

]
Tr
[
· · · e−HFVtTV · · ·

]
• The intermediate Hamiltonians Hi transition smoothly between HTV

and HFV.

• This solves both the sampling and statistics problems.
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Inverse Problem: Fermi’s Golden Rule

• We can relate the ratio

Tr
[
e−Hfullte−HTVtTVe−Hfullte−HFVtFV

]
Tr
[
e−Hfullte−HFVtTVe−Hfullte−HFVtFV

]
to the decay rate using Fermi’s Golden Rule (FGR).

• To use FGR, we need information on the energy spectrum.

• Finding the full spectrum is equivalent to the inverse problem.

• However, for FGR, we only need the spectrum at the energy of the

false vacuum.

• This allows us to try simple ansatz to approximate the spectrum.

• This procedure works when the false vacuum energy is not too big.
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Results

We use the same action as Shen et al. [2023]

S =

∫
dt

[
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2 +

{
1
2m

2x2 − ηx3 + η2

2m2 x
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]
=⇒

S = β

∫
dt
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Results

S = β

∫
dt

[
1

2
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{
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]
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Appendix: Fermi’s Golden Rule



Appendix: Fermi’s Golden Rule

• One way to calculate decay rates is Fermi’s golden rule:

Γ =
∑
m

2πδ(Em − EFV)
∣∣⟨ϕm|V |φFV⟩

∣∣2
= 2π⟨φFV|V δ(Hsep − EFV)V |φFV⟩.

• Hsep is a Hamiltonian such that the FV and TV are separated.

• V is defined so that H = Hsep + V .

• ϕm are eigenstates of Hsep in the TV.

• φFV is the lowest eigenstate of Hsep in the FV.
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Appendix: Fermi’s Golden Rule

• We can show that

⟨ψ|e−HFVtFVe−Hte−HTVtTVe−Hte−HFVtFV |ψ⟩
⟨ψ|e−HFV(2tFV+2t+tTV)|ψ⟩

=

∫ t

0

dt1

∫ t

0

dt2⟨FV|V †e−(HTV−EFV)(tTV+t1+t2)V |FV⟩

• We want to calculate

⟨φFV|V δ(Hsep − EFV)V |φFV⟩.

• Define

ρ(E ) ≡
∫ t

0

dt1

∫ t

0

dt2⟨FV|V †δ(HTV − E )e−(HTV−EFV)(tTV+t1+t2)V |FV⟩

• Then

ρ(EFV) =

∫ t

0

dt1

∫ t

0

dt2⟨FV|V †δ(HTV − EFV)V |FV⟩

= t2⟨FV|V †δ(HTV − EFV)V |FV⟩
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Appendix: Fermi’s Golden Rule

• We want

ρ(E ) =
⟨ψ|e−HFVtFVe−Htδ(HTV − E )e−HTVtTVe−Hte−HFVtFV |ψ⟩

⟨ψ|e−HFV(2tFV+2t+tTV)|ψ⟩
.

• But we can only calculate∫
dEρ(E ) =

⟨ψ|e−HFVtFVe−Hte−HTVtTVe−Hte−HFVtFV |ψ⟩
⟨ψ|e−HFV(2tFV+2t+tTV)|ψ⟩

.

• But we can also calculate the moments∫
dE Eρ(E ) and

∫
dE E 2ρ(E ).

• If we assume ρ(E ) has a Gaussian distribution, we can calculate it.
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