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FROM PATH INTEGRALS TO STOCHASTIC QUANTIZATION1

Feynman Path Integral

Wick rotation

Euclidean Path Integral

dx0 = − idx̃0

In the Euclidean space it is possible to give to 
the path integral a probabilistic interpretation 

BOLTZMANN WEIGTH: we need to 
sample configurations according to this 

probability distribution

THIS WAS NOT POSSIBLE IN THE 
ORIGINAL MINKOWSKIAN METRIC

1. Monte Carlo methods of importance POSSIBLE 
METHODS IN 
LITERATURE: 2. Parisi-Wu’s Stochastic Quantisation

SIGN 
PROBLEM



Dynamics in QFT: STOCHASTIC QUANTIZATION
FROM PATH INTEGRALS TO STOCHASTIC QUANTIZATION1

2. Parisi-Wu’s Stochastic Quantisation

Stochastic algorithm to update the field 
configuration in space-time

Stochastic dynamics

Sequence of configurations parametrised by an 
integer index: discrete ‘time’ of the algorithm 

DYNAMICS: ordered sequence of field configurations
TIME: labelling of the ordered sequence



Dynamics in QFT: STOCHASTIC QUANTIZATION
FROM PATH INTEGRALS TO STOCHASTIC QUANTIZATION1

2. Parisi-Wu’s Stochastic Quantization

We promote the algorithmic time 
to a continuous parameter

We model the sequence of quantum fluctuations 
by means of a Langevin equation

The Langevin equation is 
equivalent to Fokker-Plank 



1. Analogously to what done in Hybrid Monte Carlo (HMC) , we can interpret the stochastic 
dynamics as the approximation of a deterministic one.  

The relativistic action is taken as potential for a generalised action

SYMPLECTIC QUANTIZATION: HAMILTONIAN DYNAMICS2

From a stochastic to a deterministic dynamics: the definition 
of a conserved quantity

3. We define in a reasonable way the Hamiltonian of our system  

A. B.

2. We introduce a conjugate momentum (with respect to the intrinsic time)



INTRINSIC TIME

The physical ‘microscopic 
dynamics’ of quantum fluctuations  

SYMPLECTIC QUANTIZATION: HAMILTONIAN DYNAMICS2

From a stochastic to a deterministic dynamics:  
equations of motion

ALGORITHMIC TIME

STOCHASTIC DYNAMICS HAMILTONIAN DYNAMICS



HAMILTONIAN DYNAMICS Functional Approach to Quantum Field Theory 
probabilistically well defined

Microcanonical Postulate  
All field configurations characterised by identical value of ACTION are equally 

likely 

ERGODICITY ASSUMPTION

PROBABILITY

PARTITION SUM

We can go back to the original metric

SYMPLECTIC QUANTIZATION: HAMILTONIAN DYNAMICS2

Probabilistic interpretation and well posedness

NO NEED OF IMAGINARY TIME 



NO NEED OF IMAGINARY TIME Original Relativistic 
Action

Symplectic 
Quantisation 

Action

MICROCANONICAL 
ENSEMBLE

PROBABILITY

PARTITION SUM

SYMPLECTIC QUANTIZATION: HAMILTONIAN DYNAMICS2

Probabilistic interpretation and well posedness



SYMPLECTIC QUANTIZATION: HAMILTONIAN DYNAMICS2

Role of the intrinsic time

Parameter labelling 
the dynamics of 

quantum fluctuations 
of a given point of 

space-time (intrinsic 
time)

Physical time as the 
fourth axis of 

Minkowski space-time

HAMILTONIAN DYNAMICS



SYMPLECTIC QUANTIZATION: HAMILTONIAN DYNAMICS2

Recovering causality
Purely space-like separation 

Exponential damping 

Purely time-like separation 

Propagation 



SYMPLECTIC QUANTIZATION: HAMILTONIAN DYNAMICS3

Relation to Feynman Path Integral 

Dependence on momenta is quadratic, 
the generalised action is separable

This formalism is well defined because we can go back to the Feynman Path integral by 
means of a Fourier transform (change of statistical ensemble): 



PERTURBATIVE EQUIVALENCE OF THE MICROCANONICAL GENERATING 
FUNCTIONAL WITH THE PATH INTEGRAL FORMULATION 

3

A. Expand the field  in an orthonormal basisϕ(x)

B. Prove that in the thermodynamic limit ( ) the microcanonical ensemble is equivalent 
to the canonical 

N → ∞

C. We then use the SADDLE POINT APPROXIMATION on



PERTURBATIVE EQUIVALENCE OF THE MICROCANONICAL GENERATING 
FUNCTIONAL WITH THE PATH INTEGRAL FORMULATION 

3

D. We consider the one loop expansion around the classical field

E. The integral is the area of a 2N dimensional sphere 

F. If we impose the saddle point equation and consider the leading order we find  



PERTURBATIVE EQUIVALENCE OF THE MICROCANONICAL GENERATING 
FUNCTIONAL WITH THE PATH INTEGRAL FORMULATION 

3

G. We obtain the one-loop Minkowskian effective action of a scalar bosonic theory 

EFFECTIVE ACTION

GENERATING FUNCTION OF 
CONNECTED CORRELATION 

MICROCANONICAL QUANTUM FIELD THEORY (Andrew E. Strominger)

https://inspirehep.net/authors/987332


NUMERICAL SIMULATIONS4

 scalar field theory in 1+1 dimensionsλϕ4

··ϕ(k, τ) + ω2
k ϕ(k, τ) = 0 ω2

k = − k2
0 + k2

1 + m2

ϕ(k, τ) = ϕ(k,0)cos(ωkτ) +
·ϕ(k,0)
ωk

sin(ωkτ) ω2
k > 0

ϕ(k, τ) = ϕ(k,0)cosh(zkτ) +
·ϕ(k,0)

zk
sinh(zkτ) ω2

k < 0

FREE CASE 
λ = 0

izk = ω2
k

BLOW-UP 
SOLUTION!

We  remove the 
interaction



NUMERICAL SIMULATIONS: RESULTS4

POSSIBLE SOLUTIONS TO THE BLOW UP: 
The role of the interaction
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NUMERICAL SIMULATIONS: RESULTS4

PROPAGATOR IN EUCLIDEAN SPACE:  
consistent with Stochastic Quantisation
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PROPAGATOR IN MINKOWSKI SPACE 

−4
−3

−2
−1

0 1
2

3 4 −4
−3

−2
−1

0
1

2
3

4

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

mass = 2.0, a = 1.0, La = 128

k0

k1

G
(k

0
,k

1
)

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

NUMERICAL SIMULATIONS: RESULTS4

m=3, a=1.0, =0.01, La=128λ
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Minkowskian two point correlation function

21

PROPAGATOR IN MINKOWSKI SPACE 
NUMERICAL SIMULATIONS: RESULTS4
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We have found a new dynamics for relativistic quantum field fluctuations that is 
able to produce sensible results.

CONCLUSIONS AND PERSPECTIVES5

New additional variables: conjugate momenta

New time parameter: different from observers time

Global constraint: generalised action is conserved

Preserves the causal structure of space-time

Deterministic dynamic to describe quantum fluctuations



Thank you! 



NUMERICAL SIMULATIONS4

Boundary conditions: FRINGE BOUNDARIES CONDITION
 scalar field theory in 1+1 dimensionsλϕ4

WE CANNOT USE PERIODIC 
BOUNDARIES BECAUSE 
THEY DON’T PRESERVE 

CAUSALITY

We have to introduce some ad 
hoc boundary conditions: 

ABSORBING BOUNDARIES

fdamping( )


