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What is the Affine Conjecture?

"The affine map between Regge's lattice geometry
and the lattice couplings on each tangent provides an
exact general solution to lattice field theory on
smooth Euclidean manifolds in the continuum”

Motivation and Bacﬁgmuno{ reacfing

1961 REGGE "General Relativity without Coordinates"

1974 WILSON "Confinement of Quarks" LATTICE QCD

1984 T D LEE et al " Lattice Gravity Near the Continuum”
1997 MALDACENA "Wyle transform to CFT at AdS Boundary"

2022-24 2d Ising Solution on the Affine Plane & Sphere



To O(a”2) the tangent plane is an Affine lattice on each tangent plane.

Affine Projected Triangle
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Tangent Plane
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"The art of doing mathematics consists
finding that special case which contains

all the germs of generality."

David Hilbert Mathematician, Physicist, Philosopher™

*Author of Geometry and the Imagination




Classical Field Geometry




Classical Gravity and Fields are piecewise elements on SAME simplicial graphs!

Classical Gravitation Metric Manifold Classical Fields: PDEs

REGGE: Piecewise linear metric FEM: Piecewise linear fields

S = %[Z K@',j(¢i — ¢j)2 =+ )\O(¢3; o 1)2]
(%,7)

Only Geometry as invariant Llength Only dimensionless fields and couplings
ds2 — Iy (x)dm“da‘;” plus FEM Discrete Exterior Calc map.



REGGE'S MANIFOLD
‘General Relativity without Coordinates” 1960
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Scalar Phi4/Ising Model
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Quantum Physic:
Ising Model on the flat Affine Plane




Affine: In 2d tlat space
Square to general triangle




Affine extension of Poincare group:

Unit circle General ellipse Unit equilateral General simplex/mod Poincare
T 0)) = &~
9z, y)9(0)) (2 +y ) (ax? + ba:'y + cy?)e

« d=2Poincare: 1 rotation 2 translation
e d =2 constant metric- 3 parameters: 1 major/minor + 1 orientation + 1 scaling

e General Poincare d(d+1)/2 plus d(d+1)/2 the number of edge in d-simplex - local metric
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Map of Reggi's Geometry to Lattice Coupling

* Free (FEM) scalar CFT.

1

Sfree — 5 Z[K1(¢n — ¢n_|_i)2 —+ K2(¢n — ¢n—|-§)2 -+ K3(¢n — ¢n—|—§)2]

n

2K, =050y, 2Ky =05)ly , 2Ks5= {5/l .

» Exact Ising Quantum Map:
Smh(2K1) — ZT/El . SlIlh(QKQ) — 63/62 ] SlIlh(QKg) — f;/fg

implies critical surface: pip2 + p2ps +p3pr =1 with p; = exp(—2K;)

+ PhidthMap? [ (K, Ao) = £;/4;



Calculation Modular dependent on the torus
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First Attempt (with good results) on refined octahedron

=0 (A),1(T1), 2 (H) are irreducible 120 Icosahedral subgroup of O(3)

N—F+E=2 F = Nx =20L% and dof: 2N = 4 4+ 20L7




To O(a”2) the tangent plane is an Affine lattice on each tangent plane.
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SMOOTH" SCALAR CURVAITURE ON' SPHERE

(See 1984 T D LEE et al " Lattice Gravity Near the Continuum" )

A* X X
€h =Y Eiiy1 = ,05 14+ 0(/p?) cap — o o T B 2:21919 [1+0(¢%/p%)]

(

— =

(D
J

Generalize: Hinge D-2 Volume to closest hybrid to Hinge

. o

E B A
. :Zef,f == ( 5 ) Dp§ L1+ 0%/ p*)]




Co-ordinate change gauge to smooth Scalar Curvature
BUT till not right gauge/co-ordinate system
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Area Optimization to smooth scalar curvature

S(ti;) =N~ A% (li;) dof: 2N =4 + 20L3
/\

, Dual Area Variance
Area Variance
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y= ;19819 N

0.049635
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Refinemen t Level

4A(a,b,c)* = (a+b+c)(—a+b+c)a—b+c)la+b—c)
_ o202 R 2= 02, = |F — P =227 -7



Smooth Scalar Curvature Theorem

Ratio of Deficit Angle Over Dual Area

1984 T D LEE et al " Lattice Gravity Near the Continuum"
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WHAT'S NEXT?

Precession tests and geometric analysis of Affine map -- e.q.
generalized Karsch coefficients and EM tensor.

Test for 2d phi™ theory. f (i, Ao) = & /4

3d Ising modelon S° & on R x S2

For 3d an 4d Gauge theories R % SB

e Put S° and S3 lattice data structures
into Grid (with Peter Boyle's help!)

e Develop general Affine Map adaptive algorithm
(aka Machine Learning) for Ricci flow gauge fixing of Co-ordinates.



Find the affine map for 2D ¢*
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2D & 3D SIMPLCIAL PLATONIC SOLIDS

4 triangle 8 triangle 20 triangle
N N 7 ‘1
Q | 2)
Tetrahedron Hexahedron Octahedron Dodecahedron Icosahedron dual
self dual
600 tetra
5 tetra 8 cubes 120 dedaca

self dual

6th self dual with 24 octahedrons EulerN-E+F-V =0 https://en.wikipedia.org/wiki/Regular_4-polytope#


https://en.wikipedia.org/wiki/Regular_4-polytope#

3 Spheres and 4D Radial Simplicial Lattices
> R x S°

/

Aristotle’ s 2% Error! Fast Code Domains of

Regular 3D Grids on Refinement

(2m — BArcCos|1/3])/(2m) = 0.0204336

600 cell: “Square of the icosahedron” —Symmetries 1440= 120 * 120 the 120 copies of icosahedron
O(4) ~SU(2) x SU(2)

The full symmetry group of the 600-cell is the Weyl group of Hs. This is a group of order 14400. It consists of 7200 rotations and 7200 rotation-
reflections. The rotations form an invariant subgroup of the full symmetry group.


https://en.wikipedia.org/wiki/List_of_regular_polytopes_and_compounds#Five-dimensional_regular_polytopes_and_higher
https://en.wikipedia.org/wiki/Symmetry_group
https://en.wikipedia.org/wiki/Weyl_group
https://en.wikipedia.org/wiki/H4_(mathematics)
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Rotation_(mathematics)
https://en.wikipedia.org/wiki/Invariant_subgroup

Continuous Time (aka Euclidian Hamiltonian) Cluster Monte Carlo*

Affine: a; — 0

— Z Kf?st,ist—l—l i Z St 15t,1 H = Z FzO- + Z Kzga- J
ti

(%,7) (%,7)

Kij — atl?ij ; 6_2atKi — tanh(atfz-)

e A state space (real value decay times) | A :: 1] T L %
B Poisson Decays: _ —1I't
y P(t) =Te
C. Spatial Percolation P R 1 . 6_2At0’uerlapKij
L 1 L4 1 & o+ i
D. SW Flip clusters for new state A Spatlal Graph >

Pretty Easy to Program with Connected Components Graph algorithms:
Works for 1 + d Radial Quantization (Sphere) Ising/SUSY/Warped AdS etc

*See: 1998: H. Rieger, N. Kawashima
Application of a continous time cluster algorithm to the Two-dimensional Random Quantum Ising Ferromagnet

Duality: cosh(2a,K7) cosh(a,I';) = 1



FERMILAB-POSTER-24-0170-T

Matching Curved Lattices to Anisotropic Tangent

Planes

George T. Fleming, Theory Division, Fermilab
with R. Brower (Boston U.) J. Lin (Carnegie-Mellon U.), N. Matsumoto (Boston U.)

Near-Conformal Field Theories

» Strongly-coupled near-conformal field
theories could be important for BSM
physics.

Example: composite Higgs boson
H~QQ, v~(QQ).

This implies a composite Yukawa
mechanism to give mass to SM

fermions: yf(QQ)ff/Az

But, this also leads to flavor changing
neutral currents YU/, which
requires A > 1000 TeV.

So, composite Higgs theory must be

strongly-coupled over a range of 0.1 —
1000 TeV.

Very hard to study on hypercubic flat
torus. See talks by A. Hasenfratz and
O. Witzel on Friday.

Radial Quantization

Eigenstates of Dilatation operator defined on
surfaces of constant radius.

Eigenstates labeled by angular momenta
(¢, m,) due to rotational invariance.
Dynamical dispersion relation (conformal):

NApr=D0pot+ 7
Correlations (conformal):

c(eet) = 2 B(A, &) e~toclt=t]
0

Near-conformal would modify integer spacing
and t-dependence.

Challenge: How to define action on irregular
spherical lattice that has rotational symmetry
in continuum limit?

Quantum Finite Elements

* Limited Solution: Finite Element Method
(FEM) gives classically perfect action. QFE
adds perturbative counterterms.

Method worked for critical 3D ¢* theory but
very slow convergence to continuum limit.
Also, discovered a novel coupling to local
curvature density, Ric(x)$?(x), which
further slowed convergence ~ 0 (a®*%).
Lesson 1: Adjust lattice so curvature density is
uniform a la Regge calculus.

Lesson 2: Need a better method to define
lattice action which is closer to strongly
coupled IR fixed point.

- \2 @ oy SorE=5— Gz 62006, — 24\36G ) | 67 .
r7(“) +V‘;7\/"T,0h QFE lz;\/T[ 00G 00 J f
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Beyond QFE: Affine Conjecture
See Talk by R. Brower on Tues.

» Start with uniform simplicial graph on a
refined regular (D+1)-polytope (e.g.
Icosahedron or 600-cell)

Project vertices to SP. Optimize vertex
positions to uniform curvature density
(Regge calculus) while preserving
graph structure and isometries of
polytope.

Each D-simplex no longer has uniform
edge lengths but still defines a
“tangent” plane.

Tesselate each tangent plane with an
asymmetric simplicial honeycomb (4p
root lattice) using edge lengths of
associated D-simplex.

Challenge: In the tangent plane, find
the anisotropic bare lattice action that
dynamically produces the desired
ratios of edge lengths.

That tangent plane action is the lattice
action for the associated D-simplex on
the SP.

Proof of principle: critical Ising model
on S?, E. Owen and R. Brower, 2023.

Specific Goal for This Work

+ Solve the critical D=3 Ising model on a
general anisotropic face-centered cubic
(FCC, aka Asroot lattice).

The isotropic FCC case has been
solved many times: P.H.Lundow et al
2009, U. Yu 2015.

Under the affine conjecture, a general
solution would enable critical Ising
model calculations on discretized $3
starting from 600-cell (higher-
dimensional icosahedron) and
tessellating each regular tetrahedral
cell with an FCC lattice.

Note a general anisotropic FCC lattice
has 6 unique lengths and any lattice
can be transformed to the isotropic
FCC lattice by affine transformation
which also has 6 free parameters.

Generalized FCC Ising model
 Affine FCC partition function

Z(Kli ) K6) =
Sp=*1

eKisnSpi3t - +KeSnSpig ,

En,é = —SnSn+e

* Multihistogram master equation (solved iteratively)
R N,

1
Eui Z Z R N. 771 o®k—K))Er;
J=1"7%j

r=1i=1

o
where R is number of runs, N, is length of runr, E;.;
are energies on i-th configuration of run r.

* Observables for any other nearby K:
R Ny

(@) =—=>"Y =

Z(K 7S i=1 Z?:l N; Zj_l e (K=Kj) Er;

R Ny

oy 1
Z(K) N ZZ 2 1 _(R—K)Er;
ot 257 e

r=1i=1

First Test
Ko _Ks _ Ke

* First test: B _%_ b =
G G Ki K1 Ki
{0.94,0.97,1.00,1.03,1.06}
* K is tuned close to critical point.

* Solve multihistogram consistency condition
for all 35 runs, each run N,. = 50,000 configs.

vV = 1283

800000 900000

@,1,1,1,1,1) -E

Important: all susceptibilities peak at same
critical coupling.

Using multihistogram reweighting, find critical
surface I_()Cm by identifying peak in

Cov(E, E). In general, it is a 5-d surface with
permutation symmetry.

Then, along critical surface compute two-
point function:

(s(@s(0)) =

(x; Gy; (K eric) xj)Aa
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BACK UP



First step: Construct the Classical Simplicial Theory

Juv (CE’) Quantum field ¢(£E)
Regge Calc Geometry l Finite Element Method

Classical Simplicial Action

— ¢y)” + V92 € Ric ¢5 +mids + Xody ]|




3 Equivalent Loop Expansion for Partition Functions!

Kramers Wannier High T/Low T Loop expansion Wilson-Majorana Lattice Fermions

sinh QKZj sinh 2L@3 — ] Pij = -(1+é;5-0)



Smooth Link Weight K1 (K2 and K3 are rotated)
pbefore and after scalar smoothing

Projected From Icosahedron Smoothed Scalar Curvaturer
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* Now set all the circumradii
equal to converge to a

differential affine tangent
planes.
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SUMMARY OF SIMPLICIAL FIELDS

J=1/2 Swison = 5 Z Vi %e“”‘) YUQjby — Qi )

Upni; = UijUjUgi - Agjr = |o2(igk)| Vi = |o2(ijk) Aoz (igk)|
Uoi; = UoiU;;Ujo Ul = = Uo;jU;iUip  Vij = o1(i7) N o1 (2))

0y



Finite Volume/Temperature Measurements
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_F(ﬁahx)

gbvng T=0
/F o Central charge enters finite
temperature free energy and
T t amplitudes:
19 + =1o ‘Z‘ Can trace from UV to IR
0),[0), ]€)
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