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TRG approach

v/ Tensor renormalization group (TRG) approximately contracts a given TN based on
the idea of real-space renormalization group

* No sign problem
- The computational cost scales logarithmically w. r. t. system size

* Direct evaluation of the Grassmann integrals
* Direct evaluation of the path integral

v/ Applicability to the higher-dimensional systems

* If the system is translationally invariant on a lattice, .. S G G S
we can easily apply the TRG to contract the TN A

* In higher dimensions, TRG approach is usually less computationally expensive
than the variational TN approach

* Higher-dimensional TRG computations must be informative to develop and

improve various higher-dimensional TN algorithms
Cf. TRG for 3D SU(2) PCM, SA-Jha-Unmuth-Yockey, arXiv:2406.10081



Grassmann TRG approach

v/ TRG can directly deal with the Grassmann path integral w/o pseudo-fermion

2/12

Gu-Verstraete-Wen, arXiv.1004.2563, Gu, PRB88(2013)115139, Shimizu-Kuramashi, PRD90(2014)014508

¢/ Introduction to the Grassmann TRG

SA-Meurice-Sakai,
Journal of Physics: Condensed Matter 36 (2024) 343002

v/ A Python package by A. Yosprakob

Yosprakob, SciPostPhys. Codebases 20 (2023)
Cf. Talk by Yosprakob (7/30)
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Abstract
We review the basic ideas of the tensor renormalization group method and show how they can
be applied for lattice field theory models involving relativistic fermions and Grassmann
variables in arbitrary dimensions. We discuss recent progress for entanglement filtering, loop
optimization, b ighti i and matrix product decompositions for Grassmann
tensor networks. The new methods are tested with two-dimensional Wilson-Majorana fermions
and multi-flavor Gross—Neveu models. We show that the methods can also be applied to the
fermionic Hubbard model in 141 and 241 dimensions.
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Lischer’s admissibility condition

Liischer, NPB549(1999)295-334

v/ The gauge action reads

1-RePyy(n)
~[[1-Puv ()| /€

.BSg = ,BZn,,u>v 1 if ”1 — Pm,(n)” <€

and S, = oo, otherwise

v/ The gauge fields are separated into disconnected subspaces, corresponding to
topological charge

v/ In the MC simulation, the topological change is substantially suppressed
Fukaya-Onogi, PRD68(2003)074503

v With a 8 term, the MC simulation is extremely difficult due to the complex action
problem and the topological freezing
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Why don’t we take the advantage of TRG?

v TRG allows us to compute the path integral w/o suffering from the sign problem
and the full contributions from every topological sector should be automatically
included

v As an example, we consider the U(1) gauge-Higgs model w/ a @ term in (1+1)D
S =BSy + Sy + Se

Sn = = ZnlZo@" MUy p(n +9) + ¢"(n + MU (M)} + MIp()|* + Alp()|*]

i0
So = —;—nznlogPlz(n) '\9

v At 0 = m, the first-order transition takes place w/ 6=0,2n
M > M. and the critical behaviorat M = M_ is in

the 2D Ising universality class

Gattringer+, NPB935(2018)344-364 M
Komargodski+, SciPost Phys. 6(2019)003

v
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TN formulation

v Parametrizing U, (n) = e'™™ and ¢(n) = r(n)e'?™, we choose the unitary
gauge which eliminates ¢@(n) from the action

v/ The path integral Z is discretized by Gauss quadrature rules
Kuramashi-Yoshimura, JHEP04(2020)089, Kadoh+, JHEP02(2020)161

T f @) = Sgep i f(B), J) drg() = Zrep, wrg ()

- 21

v/ The accuracy of the discretized path integral is controlled by # of sampling points
in Dy and Dp: Z = Z(Kg, Ky, )

v/ The tensor network representation for Z(Kg, Kh) is straightforwardly derived

v We use the Bond-weighted TRG (BTRG) algorithm to evaluate Z(Kg, Kh)

Adachi+, PRB105(2022)L060402



Pure gauge theory 1/2

w/B=3,e=1D =K, =30

v/ A Clear signal of the first-order transition in the topological charge

v/ The two-fold ground state degeneracy at 8 = m is also observed
Gu-Wen, PRB80(2009)155131
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Pure gauge theory 2/2

w/B=3e=1D=K, =30

v/ The peak height of the topological susceptibility is proportional to the volume

v TRG is successfully dealing with the Liischer gauge action

Peak height of topological susceptibility

10§

O TRG
— Fit

Xpeak(L) =co+ ¢, LP
Y p=2.00001(6)
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The gauge-Higgs model

w/ B =3,1=05¢e=1K,=K,=20,D =160

¢/ Discontinuity in the topological charge is vanishing by decreasing the mass M

v Computing the ground-state degeneracy, we can bound the critical mass M,
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ldentification of the universality class
w/f =3,1=05¢e=1K, =K, =20,D =160

v/ Transfer matrix T is easily obtained from the TN representation
Gu-Wen, PRB80(2009)155131

1 | Ao(L)
21 2 (L)

v/ Ratio of the largest eigenvalue of T to smaller one: x,(L) =

v/ These are nothing but the scaling dimensions when the system is sufficiently
large and at criticality
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v The volume independence in x;(L) ¢ s o |
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Tensor-network-based level spectroscopy

v/ Assuming the 2D Ising universality class, we employ the level spectroscopy to

determine the critical mass M, from scaling dimensions intersections
Ueda-Oshikawa, PRB108(2023)024413

Cf. Next talk by Fathiyya

v/ We particularly use the intersections of x.,, = X1 + X5 /16 to remove the effect
of the leading irrelevant perturbation
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Critical point and central charge

w/ B =3,1=05¢e=1K,=K,=20,D =160

v/ The resulting critical massis M. = 2.9974765(14)

v/ This is consistent not only with the previous bound from the ground-state
degeneracy, but also comparable with the previous MC result based on dual
representation employing the Villain-type gauge action: M. = 2.989(2)

Gattringer+, NPB935(2018)344-364

v/ Investigating the finite-size correction for the free energy, the central charge is
obtained as ¢ = 0.50(7), in agreement with the 2D Ising universality class

¢/ The algorithmic-parameter dependence of M. seems well suppressed

x is another algorithmic parameter to compress

K, K, x D M,
24 20 8 192 2.9982886(1)
22 20 8 176 2.9998263(13)
20 20 8 160 2.9974765(14)
24 10 6 144 2.9929635(1)
22 10 6 132  2.9945222(9)
20 10 7 140 2.9921698(6)

the initial bond dimension from K K}, to K, x
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Summary and outlook

v/ The critical behavior in the (1+1)D gauge-Higgs model with a 8 term has been
investigated by the TRG, employing the Liischer gauge action

v/ The 2D Ising universality class is confirmed at 8 = &, as expected

¢/ All numerical results show that the TRG is a promising approach to investigate
the lattice gauge theories with Lischer’s admissibility condition






Comparison w/ the standard Wilson action 1/2

(a) (8,V) = (1.6,2%)

Free energy density

v/ The field-theoretical def. for
the topological term:

17)
Se = _;_T[anm P, (n)

v/ The 27 periodicity appears in the
continuum limit

¢/ The Liischer action shows the faster
convergence than the Wilson one

v/ The peak of the susceptibility is closer
tof/m=1

B Liischer (e=1)  Wilson
1.6 1.11932(3)  1.67903(2)
32 108112(2)  1.26026(1)
6.4  1.05111(4)  1.09604(7)
12.8  1.03070(3)  1.04296(1)




Comparison w/ the standard Wilson action 2/2

Topological charge density (a) (B.V) = (16,2)

v/ The field-theoretical def. for
the topological term:

17)
Se = _;_T[anm P, (n)

v/ The 27 periodicity appears in the
continuum limit

¢/ The Liischer action shows the faster
convergence than the Wilson one

v/ The peak of the susceptibility is closer
tof/m=1

B Liischer (e=1)  Wilson
1.6 1.11932(3)  1.67903(2)
32 108112(2)  1.26026(1)
6.4  1.05111(4)  1.09604(7)
12.8  1.03070(3)  1.04296(1)




Tensor-network-based level spectroscopy

v/ Assuming the 2D Ising universality class, we employ a level spectroscopy to
determine the critical point T, Ueda-Oshikawa, PRB108(2023)024413

(i) Choose two mass parameter T suchthat T < T, < T

(ii) At these two points, compute x (L) = x4 (L) + x,(L)/16. This combination removes the effect from
the leading irrelevant perturbation associated with the scaling dimension 4

(iii) Perform liner interpolations of x ¢, (L) — 3/16 btw T2

22904 * 0.22 e L|=16 c'-.

and T at each system size and find a crossing e
point T*(L) of two lines with the system sizes L and V2L e =322
2.285 1
(iv) Fit T*(L) by T*(L) = T, + aL, and o
we finally obtain the critical point T I
2.280 1 XD
S .
[ o

2.275 4

2.26 2.27 2.28

2.270 - .

2.265 A »




TN representation 1/2

v/ The discretized path integral is described by a four-leg local tensor T':

117
n

Z(Ky, Kp) = tTr

(Tn)azyx’y’ — T(g) T(Q) T(h)

! 5,/ ! 5,/ / /
:E£7Z/Q:E£]Z/g :BSJZ/Q:BSJZ/Q :UiLZ/fLQZQZB}LEd;Z/h

T(Q)

Y
Tg¥gZgYg

{ V Wag Wy Way Wy, exp [—B L —cos (yy + 29 — Yy — )

. <oibl
T [l—cosw(y;thg _yg_%)] e i adm1881be’

0 otherwise

922

T(e) = exp (ﬁ In {ei”(yéﬂg—yg_%)])

xgygw/gylg 27‘(’



TN representation 2/2

v Compression for the hopping term:

\/wg v o(l(n) +E(nt2)) /4
V2
M (5 ; - Al 7 N2
X exp [ \/€ n—I—V cos 70, (n) — T (E(n) +€(n+u)) — 2 (K(n) +4(n+ D) )]

X
HZ(n)@,,(n)E(n%—l/ Z {(n)9, (n)a E(n—l—u)a
a=1
(h) _ _ _ _ _
Lenmnayyuy, = 2 Amgen Yoy By, Bimyy,



