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TRG approach
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✔ Tensor renormaliza-on group (TRG) approximately contracts a given TN based on 
 the idea of real-space renormaliza-on group

✔ Applicability to the higher-dimensional systems

・No sign problem
・The computa7onal cost scales logarithmically w. r. t. system size

・Direct evalua7on of the Grassmann integrals 
・Direct evalua7on of the path integral

・If the system is transla-onally invariant on a laAce,
we can easily apply the TRG to contract the TN

・In higher dimensions, TRG approach is usually less computa-onally expensive 
    than the varia-onal TN approach

Cf. TRG for 3D SU(2) PCM, SA-Jha-Unmuth−Yockey, arXiv:2406.10081

・Higher-dimensional TRG computa-ons must be informa-ve to develop and 
    improve various higher-dimensional TN algorithms 



Grassmann TRG approach
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✔ TRG can directly deal with the Grassmann path integral w/o pseudo-fermion
Gu-Verstraete-Wen, arXiv.1004.2563, Gu, PRB88(2013)115139, Shimizu-Kuramashi, PRD90(2014)014508 

✔ Introduc7on to the Grassmann TRG
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Abstract
We review the basic ideas of the tensor renormalization group method and show how they can
be applied for lattice field theory models involving relativistic fermions and Grassmann
variables in arbitrary dimensions. We discuss recent progress for entanglement filtering, loop
optimization, bond-weighting techniques and matrix product decompositions for Grassmann
tensor networks. The new methods are tested with two-dimensional Wilson–Majorana fermions
and multi-flavor Gross–Neveu models. We show that the methods can also be applied to the
fermionic Hubbard model in 1+1 and 2+1 dimensions.
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✔ A Python package by A. Yosprakob

Yosprakob, SciPostPhys. Codebases 20 (2023)
Cf. Talk by Yosprakob (7/30)



Lüscher’s admissibility condi8on
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✔ The gauge ac-on reads

Lüscher, NPB549(1999)295-334

𝛽𝑆! = 𝛽∑",$%&
'()*+!" "

'( '(+!" " /-
 if 1 − 𝑃$& 𝑛 < 𝜖

✔ and 𝛽𝑆! = ∞, otherwise

✔ The gauge fields are separated into disconnected subspaces, corresponding to 
      topological charge

✔ In the MC simula-on, the topological change is substan-ally suppressed
Fukaya-Onogi, PRD68(2003)074503

✔With a 𝜃 term, the MC simula-on is extremely difficult due to the complex ac7on 
     problem and the topological freezing



Why don’t we take the advantage of TRG?
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✔ TRG allows us to compute the path integral w/o suffering from the sign problem 
     and the full contribu7ons from every topological sector should be automa7cally 
     included

✔ As an example, we consider the U(1) gauge-Higgs model w/ a 𝜃 term in (1+1)D

𝑆 = 𝛽𝑆! + 𝑆. + 𝑆/

𝑆. = −∑" ∑& 𝜙∗ 𝑛 𝑈&𝜙 𝑛 + �̂� + 𝜙∗ 𝑛 + �̂� 𝑈&∗𝜙 𝑛 +𝑀 𝜙 𝑛 1 + 𝜆 𝜙 𝑛 2  

𝑆/ = − 34
15
∑" log 𝑃'1 𝑛  

!!

" = $
" = 0, 2$

"

𝑀

✔ At 𝜃 = 𝜋, the first-order transi-on takes place w/ 
     𝑀 > 𝑀" and the cri-cal behavior at 𝑀 = 𝑀" is in 
     the 2D Ising universality class

GaVringer+, NPB935(2018)344-364
Komargodski+, SciPost Phys. 6(2019)003



TN formula8on
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✔ Parametrizing 𝑈# 𝑛 = e$%! &  and 𝜙 𝑛 = 𝑟 𝑛 e$' & , we choose the unitary 
     gauge which eliminates 𝜑 𝑛  from the ac-on

✔ The path integral 𝑍 is discre-zed by Gauss quadrature rules
Kuramashi-Yoshimura, JHEP04(2020)089, Kadoh+, JHEP02(2020)161

∫(5
5 67"

15
𝑓 𝜗& ≃ ∑87"∈:#

𝑤87"𝑓 :𝜗& , ∫;
< d𝑟 𝑔 𝑟 ≃ ∑ =>∈:$𝑤=>𝑔 �̃�  

✔ The accuracy of the discre-zed path integral is controlled by # of sampling points 
      in 𝐷! and 𝐷(: 𝑍 ≃ 𝑍 𝐾!, 𝐾(

✔ The tensor network representa-on for 𝑍 𝐾!, 𝐾(  is straighWorwardly derived

✔We use the Bond-weighted TRG (BTRG) algorithm to evaluate 𝑍 𝐾!, 𝐾(  

Adachi+, PRB105(2022)L060402



Pure gauge theory 1/2
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✔ A Clear signal of the first-order transi-on in the topological charge
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✔ The two-fold ground state degeneracy at 𝜃 = 𝜋 is also observed

w/ 𝛽 = 3, 𝜖 = 1, 𝐷 = 𝐾" = 30

Ground-state degeneracy

Gu-Wen, PRB80(2009)155131

Topological charge density



Pure gauge theory 2/2
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w/ 𝛽 = 3, 𝜖 = 1, 𝐷 = 𝐾" = 30
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✔ The peak height of the topological suscep-bility is propor-onal to the volume

Peak height of topological suscep8bility

✔ TRG is successfully dealing with the Lüscher gauge ac7on 



The gauge-Higgs model
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✔ Discon-nuity in the topological charge is vanishing by decreasing the mass 𝑀 
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✔ Compu-ng the ground-state degeneracy, we can bound the cri-cal mass 𝑀" 

2.99747 ≤ 𝑀C ≤ 2.99748

w/ 𝛽 = 3, 𝜆 = 0.5, 𝜖 = 1, 𝐾" = 𝐾# = 20, 𝐷 = 160



Iden8fica8on of the universality class
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✔ Transfer matrix 𝑇 is easily obtained from the TN representa-on

𝑥$ 𝐿 =
1
2𝜋

ln
𝜆% 𝐿
𝜆$ 𝐿

✔ Ra-o of the largest eigenvalue of 𝑇 to smaller one:
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✔ These are nothing but the scaling dimensions when the system is sufficiently 
      large and at cri-cality

1/8

✔ The volume independence in 𝑥) 𝐿  
     is observed w/ 𝑥) 𝐿 = 1/8, which 
     agrees with the 2D Ising universality 
     class 

Gu-Wen, PRB80(2009)155131

w/ 𝛽 = 3, 𝜆 = 0.5, 𝜖 = 1, 𝐾" = 𝐾# = 20, 𝐷 = 160



Tensor-network-based level spectroscopy
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✔ Assuming the 2D Ising universality class, we employ the level spectroscopy to 
     determine the cri-cal mass 𝑀" from scaling dimensions intersec-ons
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Cf. Next talk by Fathiyya
Ueda-Oshikawa, PRB108(2023)024413

✔We par-cularly use the intersec-ons of 𝑥"*+ = 𝑥) + 𝑥,/16 to remove the effect 
     of the leading irrelevant perturba-on 

3/16



Cri8cal point and central charge
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✔ The resul-ng cri-cal mass is 𝑴𝐜 = 𝟐. 𝟗𝟗𝟕𝟒𝟕𝟔𝟓 𝟏𝟒
w/ 𝛽 = 3, 𝜆 = 0.5, 𝜖 = 1, 𝐾" = 𝐾# = 20, 𝐷 = 160

✔ This is consistent not only with the previous bound from the ground-state 
     degeneracy, but also comparable with the previous MC result based on dual 
     representa-on employing the Villain-type gauge ac-on: 𝑴𝐜 = 𝟐. 𝟗𝟖𝟗 𝟐

GaVringer+, NPB935(2018)344-364

✔ Inves-ga-ng the finite-size correc-on for the free energy, the central charge is 
     obtained as 𝒄 = 𝟎. 𝟓𝟎 𝟕 , in agreement with the 2D Ising universality class
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Figure 7: The system-size dependence of the scaling dimension x1(L). The dashed line

denotes the theoretical value of the 2d Ising universality class, x1 = 1/8.

the Monte Carlo simulation is performed based on the dual representation. Note that

Mc = 2.989(2) in Ref. [39] is obtained at � = 3.0 and � = 0.5.

Table 1: Comparison of the critical endpoint Mc against the algorithmic parameters.

Kg Kh � D Mc

24 20 8 192 2.9982886(1)

22 20 8 176 2.9998263(13)

20 20 8 160 2.9974765(14)

24 10 6 144 2.9929635(1)

22 10 6 132 2.9945222(9)

20 10 7 140 2.9921698(6)

4 Summary and outlook

We have analyzed the phase structure of the (1+1)d U(1) gauge-Higgs model with a ✓

term, whose gauge action is constructed with Lüscher’s admissibility condition. Although

the model su↵ers from a complex action problem and topological freezing within the Monte

Carlo simulation, the TRG approach allows us to deal with the model successfully. We

– 12 –

✔ The algorithmic-parameter dependence of 𝑀" seems well suppressed

𝜒 is another algorithmic parameter to compress 
the ini8al bond dimension from 𝐾!𝐾"  to 𝐾!𝜒



Summary and outlook
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✔ The cri-cal behavior in the (1+1)D gauge-Higgs model with a 𝜃 term has been 
     inves-gated by the TRG, employing the Lüscher gauge ac7on  

✔ The 2D Ising universality class is confirmed at 𝜃 = 𝜋, as expected

✔ All numerical results show that the TRG is a promising approach to inves-gate 
     the laAce gauge theories with Lüscher’s admissibility condi-on
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Comparison w/ the standard Wilson ac8on 1/2
(a) (�, V ) = (1.6, 24)
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Figure 9: Free energy density lnZ/V at various (�, V ) by the Lüscher gauge action (left)

and Wilson gauge action (right) with fixing �/V = 0.1.
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✔ The field-theore-cal def. for 
     the topological term:

𝑆/ = − 34
15
∑" Im𝑃'1 𝑛  

✔ The 2𝜋 periodicity appears in the 
     con-nuum limit

✔ The Lüscher ac7on shows the faster 
     convergence than the Wilson one

Free energy density

Table 2: Comparison of ✓c/⇡ obtained by the Lüscher gauge action (✏ = 1) and Wilson

gauge action fixing �/V = 0.1.

� Lüscher (✏ = 1) Wilson

1.6 1.11932(3) 1.67903(2)

3.2 1.08112(2) 1.26026(1)

6.4 1.05111(4) 1.09604(7)

12.8 1.03070(3) 1.04296(1)

– 15 –

✔ The peak of the suscep-bility is closer 
     to 𝜃/𝜋 = 1 



Comparison w/ the standard Wilson ac8on 2/2
(a) (�, V ) = (1.6, 24)
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Figure 10: Topological charge density hQi/V at various (�, V ) by the Lüscher gauge

action (left) and Wilson gauge action (right) with fixing �/V = 0.1.
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✔ The field-theore-cal def. for 
     the topological term:

𝑆/ = − 34
15
∑" Im𝑃'1 𝑛  

✔ The 2𝜋 periodicity appears in the 
     con-nuum limit

✔ The Lüscher ac7on shows the faster 
     convergence than the Wilson one

Topological charge density
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� Lüscher (✏ = 1) Wilson
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3.2 1.08112(2) 1.26026(1)
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✔ The peak of the suscep-bility is closer 
     to 𝜃/𝜋 = 1 



Tensor-network-based level spectroscopy

✔ Assuming the 2D Ising universality class, we employ a level spectroscopy to 
     determine the cri-cal point 𝑇. Ueda-Oshikawa, PRB108(2023)024413

(i) Choose two mass parameter 𝑇(±) such that 𝑇(&) ≤ 𝑇' ≤ 𝑇(()

(ii) At these two points, compute 𝑥')* 𝐿 = 𝑥+ 𝐿 + 𝑥, 𝐿 /16. This combina8on removes the effect from 
     the leading irrelevant perturba8on associated with the scaling dimension 4

(iii) Perform liner interpola8ons of 𝑥')* 𝐿 − 3/16 btw 𝑇(&) 
       and 𝑇(() at each system size and find a crossing 
       point 𝑇∗ 𝐿  of two lines with the system sizes 𝐿 and 2𝐿 

(iv) Fit 𝑇∗ 𝐿  by 𝑇∗ 𝐿 = 𝑇' + 𝑎𝐿, and 
       we finally obtain the cri8cal point 𝑇'

Figure 2.2: Example of estimating the transition temperature using Loop-TNR. We
set )� = 2.66 and )

+ = 2.68 as an initial estimate. The level-crossing temperature
)
⇤
(!) is linearly fitted to extrapolate the transition temperature. The insert shows

how we compute )⇤
(!) for various system sizes.

Note that the first-order correction in the irrelevant coupling 6 is canceled out. Now
we can identify the critical point by finding the temperature for which XGcmb /

6n (!) = 0. Having eliminated the effects of the leading irrelevant perturbation
)

2
cyl, )̄

2
cyl, the dominant error is now caused by the next-leading irrelevant operator

with scaling dimension 6 and thus should be scaled as !�4.

In practice, the determination of the critical point can be efficiently implemented
as follows. First, we pick up one temperature from each phase: )

+
> )2 and

)
�
< )2, and calculate the combined shift XGcmb at these temperatures. The phase

of the system can be confirmed by observing the growth of XGcmb as the system size
increases because it increases/decreases if the system is in the high-temperature/low-
temperature phase (if the initial choice of the temperature turns out to be wrong,
change the temperature and restart the process). Next, linear interpolations of the
combined shift between the two temperatures )

± are made, and the crossing of
the lines for system sizes ! and

p
2! is found, as shown in the insert of Fig. 2.2.

We denote the temperature where the two lines cross as )
⇤
(!). Because of the

second-order contribution $ (6n
2
) in Eq. (2.20), the crossing temperature )

⇤
(!)

obtained by the linear interpolation deviates from the true critical point )2 as
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Therefore, the tensor network representation for Eq. (2.12) is obtained as

Z(Kg,Kh) = tTr

"
Y

n

Tn

#
, (2.21)

with the fundamental tensor Tn at each site n,

(Tn)xyx0y0 = T (g)
xgygx0

gy
0
g
T (✓)
xgygx0

gy
0
g
T (h)
xhyhx0

gx
0
hy

0
gy

0
h
, (2.22)

whose bond dimension is Kg�. Note that the subscripts in the left-hand side of Eq. (2.22)

are defined as i = (igih) with i = x, y, x0, y0.

2.3 Coarse-graining algorithm

We apply the bond-weighted TRG (BTRG) algorithm [41] to approximately compute the

path integral in Eq. (2.21). BTRG allows us to approximately carry out the contractions

among 2q local tensors within the q times of coarse-graining. Since each local tensor in

Eq. (2.22) is defined on each lattice site, q relates to the volume V via V = 2q and the

linear system size L via L = 2q/2.

This algorithm improves the accuracy of the original Levin-Nave TRG at the same

bond dimension. Remarkably, the computational cost of BTRG is completely the same

as the Levin-Nave TRG. The essence of the BTRG is to introduce a weight on each edge

of the tensor network. These weights mimic the e↵ect of the environment, which is not

taken into account in the original Levin-Nave TRG. Therefore, the BTRG can be regarded

as a variant of the second renormalization group algorithms [42, 43]. For the algorithmic

details, see Ref. [41]. 3

3 Numerical results

In the following, we always set � = 3.0 and the positive constant ✏ in Eq. (2.3) as ✏ = 1.0.

For the gauge-Higgs model, the quartic coupling is fixed as � = 0.5. Note that the cuto↵

e↵ects from the finite lattice spacing of the Lüscher gauge action and standard Wilson

gauge action are di↵erent even at the same inverse gauge coupling �. With the same value

of �, the Lüscher gauge action is expected to be closer to the continuum limit than the

Wilson action. See Appendix A for the comparison between the Lüscher and Wilson gauge

actions.

3.1 Pure U(1) gauge theory

We start by studying the (1+1)d pure gauge theory with a ✓ term to validate our tensor

network formulation. In this case, the local tensor in Eq. (2.22) is defined without T (h)

and the bond dimension in Eq. (2.21) is equal to Kg.

3Since the model is defined on a square lattice, we always set the hyperparameter in the BTRG algorithm

as k = �0.5 [41, 44].
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of �, the Lüscher gauge action is expected to be closer to the continuum limit than the

Wilson action. See Appendix A for the comparison between the Lüscher and Wilson gauge
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✔ The discre-zed path integral is described by a four-leg local tensor 𝑇:

S̃0
h = �

X

n

X

⌫

2
q

˜̀(n)˜̀(n+ ⌫̂) cos⇡#̃⌫(n) +
X

n

h
M ˜̀(n) + �˜̀(n)2

i
, (2.14)

S̃✓ = � i✓

2⇡

X

n

ln
h
ei⇡(#̃1(n)+#̃2(n+1̂)�#̃1(n+2̂)�#̃2(n))

i
. (2.15)

In Eq. (2.12), ˜̀(n) denotes the sampling point according to the Gauss-Laguerre quadrature

and w˜̀(n) is the corresponding weight. The number of sampling points in Dh is denoted

by Kh. Similarly, #̃⌫(n) denotes the sampling point according to the Gauss-Legendre

quadrature and w#̃⌫(n)
is the corresponding weight. The number of sampling points in Dg

is denoted by Kg. In the limits of Kg ! 1 and Kh ! 1, the original path integral is

restored. Eq. (2.12) is ready to be described as a tensor network. We introduce four-leg

pure gauge tensors on each plaquette as follows,

T (g)
xgygx0

gy
0
g

=

8
><

>:

pwxgwygwx0
g
wy0g

22
exp

"
��

1� cos⇡
�
y0g + xg � yg � x0g

�

1�
⇥
1� cos⇡

�
y0g + xg � yg � x0g

�⇤
/✏

#
if admissible

0 otherwise

,

(2.16)

T (✓)
xgygx0

gy
0
g
= exp

✓
i✓

2⇡
ln
h
ei⇡(y

0
g+xg�yg�x0

g)
i◆

. (2.17)

For the Higgs part, we introduce the following hopping matrix,

H˜̀(n)✓̃⌫(n)˜̀(n+⌫̂)

=
4
p
w˜̀(n)w˜̀(n+⌫̂)e

(˜̀(n)+˜̀(n+⌫̂))/4

p
2

⇥ exp


2
q

˜̀(n)˜̀(n+ ⌫̂) cos⇡✓̃⌫(n)�
M

4

⇣
˜̀(n) + ˜̀(n+ ⌫̂)

⌘
� �

4

⇣
˜̀(n)2 + ˜̀(n+ ⌫̂)2

⌘�
.

(2.18)

Now, we perform the singular value decomposition (SVD) of the ⌫-directional hopping

matrix, which gives us

H˜̀(n)#̃⌫(n)˜̀(n+⌫̂) '
�X

↵=1

A˜̀(n)#̃⌫(n)↵
B˜̀(n+⌫̂)↵, (2.19)

where A and B are defined by unitary matrices multiplied by the square root of singular

values �↵. In this study, we choose � in Eq. (2.19) such that the singular values satisfying

�↵/�1 > 10�7 are kept. Note that �1 is the largest singular value and �↵ is in the descending

order. We are now allowed to integrate out ˜̀(n) at each site n. As a result, we can define

a six-leg tensor at each lattice site as,

T (h)
xhyhx0

gx
0
hy

0
gy

0
h
=

X

˜̀(n)

A˜̀(n)y0gxh
A˜̀(n)x0

gyh
B˜̀(n)x0

h
B˜̀(n)y0h

. (2.20)

– 5 –

S̃0
h = �

X

n

X

⌫

2
q

˜̀(n)˜̀(n+ ⌫̂) cos⇡#̃⌫(n) +
X

n

h
M ˜̀(n) + �˜̀(n)2

i
, (2.14)

S̃✓ = � i✓

2⇡

X

n

ln
h
ei⇡(#̃1(n)+#̃2(n+1̂)�#̃1(n+2̂)�#̃2(n))

i
. (2.15)

In Eq. (2.12), ˜̀(n) denotes the sampling point according to the Gauss-Laguerre quadrature

and w˜̀(n) is the corresponding weight. The number of sampling points in Dh is denoted

by Kh. Similarly, #̃⌫(n) denotes the sampling point according to the Gauss-Legendre

quadrature and w#̃⌫(n)
is the corresponding weight. The number of sampling points in Dg

is denoted by Kg. In the limits of Kg ! 1 and Kh ! 1, the original path integral is

restored. Eq. (2.12) is ready to be described as a tensor network. We introduce four-leg

pure gauge tensors on each plaquette as follows,

T (g)
xgygx0

gy
0
g

=

8
><

>:

pwxgwygwx0
g
wy0g

22
exp

"
��

1� cos⇡
�
y0g + xg � yg � x0g

�

1�
⇥
1� cos⇡

�
y0g + xg � yg � x0g

�⇤
/✏

#
if admissible

0 otherwise

,

(2.16)

T (✓)
xgygx0

gy
0
g
= exp

✓
i✓

2⇡
ln
h
ei⇡(y

0
g+xg�yg�x0

g)
i◆

. (2.17)

For the Higgs part, we introduce the following hopping matrix,

H˜̀(n)✓̃⌫(n)˜̀(n+⌫̂)

=
4
p
w˜̀(n)w˜̀(n+⌫̂)e

(˜̀(n)+˜̀(n+⌫̂))/4

p
2

⇥ exp


2
q

˜̀(n)˜̀(n+ ⌫̂) cos⇡✓̃⌫(n)�
M

4

⇣
˜̀(n) + ˜̀(n+ ⌫̂)

⌘
� �

4

⇣
˜̀(n)2 + ˜̀(n+ ⌫̂)2

⌘�
.

(2.18)

Now, we perform the singular value decomposition (SVD) of the ⌫-directional hopping

matrix, which gives us

H˜̀(n)#̃⌫(n)˜̀(n+⌫̂) '
�X

↵=1

A˜̀(n)#̃⌫(n)↵
B˜̀(n+⌫̂)↵, (2.19)

where A and B are defined by unitary matrices multiplied by the square root of singular

values �↵. In this study, we choose � in Eq. (2.19) such that the singular values satisfying

�↵/�1 > 10�7 are kept. Note that �1 is the largest singular value and �↵ is in the descending

order. We are now allowed to integrate out ˜̀(n) at each site n. As a result, we can define

a six-leg tensor at each lattice site as,

T (h)
xhyhx0

gx
0
hy

0
gy

0
h
=

X

˜̀(n)

A˜̀(n)y0gxh
A˜̀(n)x0

gyh
B˜̀(n)x0

h
B˜̀(n)y0h

. (2.20)

– 5 –



TN representa8on 2/2

✔ Compression for the hopping term:
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