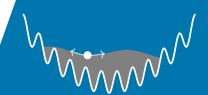


Accelerating Metadynamics

...with an eye on full QCD [PhysRevD.109.114504]/[2307.04742]

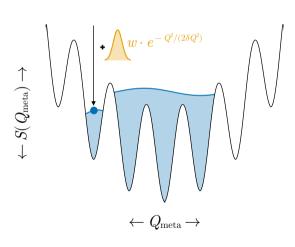
Timo Eichhorn, **Gianluca Fuwa**, Christian Hoelbling, Lukas Varnhorst



Lattice 2024 01.08.2024

Extending Metadynamics to QCD

Reminder from previous talk...


- No conceptual difficulties
- HMC already required for dynamical fermions
- Stout smearing often used for fermions
- Compared to fermionic force calculation (especially at physical quark/pion masses), overhead is negligible
- Buildup of potential may take too long
 - ⇒ Have to accelerate buildup as much as possible

Building a Metadynamics Bias Potential

Buildup speed determined by three parameters:

- Bin width δQ more or less bounded from above by the standard deviation of the collective variable in unbiased simulations (within a sector)
- Gaussian weight w has to be chosen while weighing speed against smoothness
- CV-space interval [Q_{\min} , Q_{\max}] does not have to be large (keyword: bias modification)

1. Make use of known charge parity symmetry $Q\leftrightarrow -Q$

• In practice: Whenever we update the bias potential at some Q_{meta} we also update it at $-Q_{\mathrm{meta}}$

 \Rightarrow approx. 2x speed-up

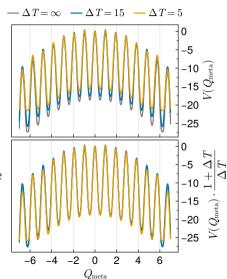
2. Well-tempered Metadynamics [Barducci' 08]

Standard Metadynamics

$$V_{t+1}(Q) = V_t(Q) + w \exp\left(-\frac{(Q_t - Q)^2}{2\sigma^2}\right)$$

Well-tempered Metadynamics

$$V_{t+1}(Q) = V_t(Q) + \exp\left(-rac{V_t(Q)}{\Delta T}\right) w \exp\left(-rac{(Q_t - Q)^2}{2\sigma^2}\right)$$


Tunable parameter ΔT :

- − ΔT → 0: No Metadynamics
- $\Delta T \rightarrow \infty$: Standard Metadynamics

2. Well-tempered Metadynamics [Barducci' 08]

- Able to choose larger w while maintaining smoothness in the end
- Quirk: Bias does not converge to -S(Q) but $-\frac{\Delta T}{1+\Delta T}S(Q)$
 - \hookrightarrow One has to be careful so as not to decrease the barrier height too much

3. Multiple walkers [Raiteri' 06]

- ullet Run $N_{
 m walkers}$ simulation streams in parallel, all working on the same potential
- Minimal communication between processes required (e.g., a single MPI.Allgather call per iteration)
 - \hookrightarrow speed-up of factor $\sim N_{\mathsf{walkers}}$
- Possible Enhancement: Start each walker in a different topological sector to eliminate time before falling into unexplored sector

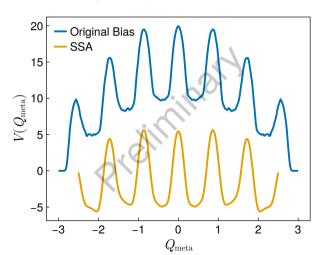
Speeding up the thermalization

Some strategies not mentioned in this talk and/or not explored so far:

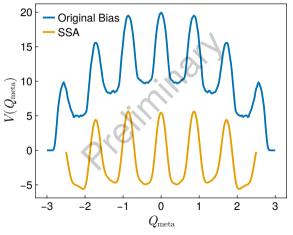
- On-the-fly parametric optimization (complicated)
- Alternative biased sampling methods, e.g., OPES [Parrinello' 20] (so far only slightly ahead of MetaD in some cases, but might become very useful)
- Using information from previous simulations on coarser lattices (unexplored)

Question to be Answered

Do these improvements enable us to use PT-MetaD in full QCD?

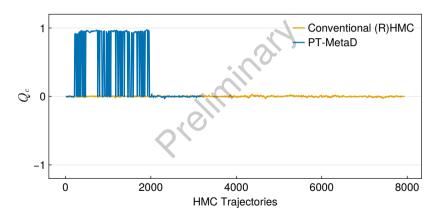

First Unquenched Case Study

- Fermion Action: 4×0.125 Stout-smeared Staggered, $N_f = 2$ @ am = 0.02
- Gauge Action: DBW2 @ $\beta=1.05$ $\hookrightarrow a^{-1} \approx 3.5\text{-}4\,\mathrm{GeV}$
- Lattice Volume: $(16a)^4 \approx (0.8 \text{ fm})^4$
- ullet Collective Variable: Clover-Charge with 6 imes 0.12 Stout smearing
- Bias parameters: $\delta Q = w = 0.02, \gamma = \infty$, $[Q_{\text{min}}, Q_{\text{max}}] = [-3, 3]$ and 6 walkers

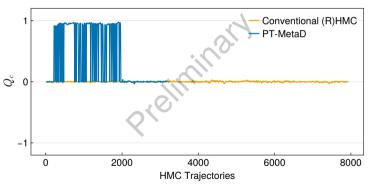

First Unquenched Case Study — Bias Potential

Bias potential after 5000 HMC trajectories per walker:

First Unquenched Case Study — Bias Potential

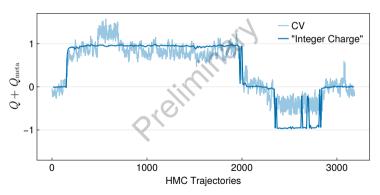


- Very similar shape to pure gauge bias potentials
- Broader valleys most likely caused by longer, possibly excessive, smearing (4 \times 0.12 \rightarrow 6 \times 0.12)
- Maybe possible to guesstimate unquenched potentials from quenched ones?


First Unquenched Case Study — PT-MetaD

PT-MetaD successfully unfreezes the system:

First Unquenched Case Study — PT-MetaD


Important to stress:

- All streams use the exact same gauge and fermion actions
 - → swap probability only depends on the difference in the bias potential
- Only 2 streams required to facilitate tunneling

First Unquenched Case Study — PT-MetaD

Summed timeseries of measurement stream and biased stream:

- More effective tunneling events than we see in the measurement stream
- Biased stream steps into transition regions, but jumps back instead of tunneling through
 ⇒ more tuning of the bias potential required (Better CV and/or higher resolution)

Summary

- Bias thermalization time can be significantly reduced by combining multiple strategies
- Time scales make it reasonable to use Metadynamics in full QCD (Further improvements certainly desired and possible)
- Preliminary case study shows successful unfreezing in full QCD using Staggered Fermions

Outlook

- Scaling of autocorrelation times
- Usage in SU(N) theories and/or with chiral fermions, where topological freezing is even more problematic

Quick Aside...

In case you missed it, check out [part 1 of this talk] by Timo Eichhorn (Thu 9:20)

How was this data generated?

- In-house written Lattice QCD code written in Julia, mainly for prototyping, inspired by [LatticeQCD.jl] by Akio Tomiya et al.:
 - [MetaQCD.jl] "dirac" branch (still being developed)

Backup