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Matching Curved Lattices to Anisotropic Tangent

Near-Conformal Field Theories

« Strongly-coupled near-conformal field
theories could be important for BSM
physics.

« Example: composite Higgs boson
H ~QQ, v~(QQ).

* This implies a composite Yukawa

mechanism to give mass to SM

fermions: > ¥/ ,

» But, this also leads to flavor changing

neutral currents YY)/ which
requires A > 1000 TeV.

» S0, composite Higgs theory must be
strongly-coupled over a range of 0.1 —
1000 TeV.

* Very hard to study on hypercubic flat
torus. See talks by A. Hasenfratz and
O. Witzel on Friday.

* Eigenstates of Dilatation operator defined on
surfaces of constant radius.

* Eigenstates labeled by angular momenta
(¢, m,) due to rotational invariance.

* Dynamical dispersion relation (conformal):
A(?,f — AO,O ~+ ’g

* Correlations (conformal):
C(¢tt) = Z B(Ap, £) e~Loslt=t]
0

* Near-conformal would modify integer spacing
and t-dependence.

* Challenge: How to define action on irregular
spherical lattice that has rotational symmetry
in continuum limit?

Quantum Finite Elements

* Limited Solution: Finite Element Method
(FEM) gives classically perfect action. QFE
adds perturbative counterterms.

* Method worked for critical 3D ¢* theory but
very slow convergence to continuum limit.

* Also, discovered a novel coupling to local
curvature density, Ric(x)¢p*(x), which
further slowed convergence ~ O (a’*1).

* Lesson 1: Adjust lattice so curvature density is
uniform a la Regge calculus.

* Lesson 2: Need a better method to define
lattice action which is closer to strongly
coupled IR fixed point.
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Beyond QFE: Affine Conjecture

See Talk by R. Brower on Tues.

Start with uniform simplicial graph on a
refined regular (D+1)-polytope (e.q.
lcosahedron or 600-cell)

Project vertices to SP. Optimize vertex
positions to uniform curvature density
(Regge calculus) while preserving
graph structure and isometries of
polytope.

Each D-simplex no longer has uniform

edge lengths but still defines a
“tangent” plane.

Tesselate each tangent plane with an
asymmetric simplicial honeycomb (A,
root lattice) using edge lengths of
associated D-simplex.

Challenge: In the tangent plane, find
the anisotropic bare lattice action that

dynamically produces the desired
ratios of edge lengths.

That tangent plane action is the lattice
action for the associated D-simplex on
the SP.

Proof of principle: critical Ising model

on S?, E. Owen and R. Brower, 2023.
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Specific Goal for This Work

Solve the critical D=3 Ising model on a
general anisotropic face-centered cubic
(FCC, aka A;root lattice).

The isotropic FCC case has been
solved many times: P.H.Lundow et al
2009, U. Yu 2015.

Under the affine conjecture, a general
solution would enable critical Ising
model calculations on discretized S$3
starting from 600-cell (higher-
dimensional icosahedron) and
tessellating each reqgular tetrahedral
cell with an FCC lattice.

Note a general anisotropic FCC lattice
has 6 unique lengths and any lattice
can be transformed to the isotropic
FCC lattice by affine transformation
which also has 6 free parameters.
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Generalized FCC Ising model

e Affine FCC partition function
Z(Kl, e K6) — z eK15n5n+/1\+--.+K6SnSn+’6\ ’

Spn=*1
En,é — —SpnSn+é
* Multihistogram master equation (solved iteratively)
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where R is number of runs, N, is length of runr, E.. ;
are energies on i-th configuration of run r.

* Observables for any other nearby K:
R N,

—> . 1 1 A OT,i
(0(K)> N R 1 (E’_E’)E’ .
Z(K) N Z]- e j)Eri

r=1i=14&j=1""]
R N,

o\ 1 1 1
Z(K) - Z 2‘ R N.7-1 e(i—ﬁj)'ﬁr,i
J

r=1i=14&j=1""]

First Test
K3 .

. K
e Firsttest: =2 =—==1, =2 =
K, K, K, Ky K,

1
{0.94,0.97,1.00,1.03,1.06}
* K, istuned close to critical point.
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* Solve multihistogram consistency condition
for all 35 runs, each run N,. = 50,000 configs.
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* Important: all susceptibilities peak at same
critical coupling.

e Using multihistogram reweighting, find critical
surface I?m-t by identifying peak in

Cov(ﬁ, E). In general, it is a 5-d surface with
permutation symmetry.

* Then, along critical surface compute two-
point function:

(s(%)s(0)) =

(x; Gy (Kerit) xj)Aa
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