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• Strongly-coupled near-conformal field 
theories could be important for BSM 
physics.

• Example: composite Higgs boson 
𝐻	~ $𝑄𝑄, 𝑣~ $𝑄𝑄 .

• This implies a composite Yukawa 
mechanism to give mass to SM 
fermions: '!! "## 	 ̅&&

'"

• But, this also leads to flavor changing 
neutral currents '(&&)(&&)

'" which 
requires Λ > 1000	𝑇𝑒𝑉.

• So, composite Higgs theory must be 
strongly-coupled over a range of 0.1 – 
1000 TeV.

• Very hard to study on hypercubic flat 
torus.  See talks by A. Hasenfratz and 
O. Witzel on Friday.

• Eigenstates of Dilatation operator defined on 
surfaces of constant radius.

• Eigenstates labeled by angular momenta 
ℓ,𝑚ℓ  due to rotational invariance.

• Dynamical dispersion relation (conformal):
Δ𝒪,ℓ = Δ𝒪,- + 	ℓ

• Correlations (conformal):
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• Near-conformal would modify integer spacing 
and t-dependence.

• Challenge: How to define action on irregular 
spherical lattice that has rotational symmetry 
in continuum limit?

Quantum Finite Elements
• Limited Solution: Finite Element Method 

(FEM) gives classically perfect action. QFE 
adds perturbative counterterms.

• Method worked for critical 3D 𝜙2 theory but 
very slow convergence to continuum limit.

• Also, discovered a novel coupling to local 
curvature density, 𝑅𝑖𝑐 𝑥 𝜙3(𝑥), which 
further slowed convergence ~	𝒪(𝑎-.25).

• Lesson 1: Adjust lattice so curvature density is 
uniform a la Regge calculus.

• Lesson 2: Need a better method to define 
lattice action which is closer to strongly 
coupled IR fixed point.

x,t1 x,t1 y,t2
λ + λ2

• Start with uniform simplicial graph on a 
refined regular (D+1)-polytope (e.g. 
Icosahedron or 600-cell)

• Project vertices to 𝕊6. Optimize vertex 
positions to uniform curvature density 
(Regge calculus) while preserving 
graph structure and isometries of 
polytope.

• Each D-simplex no longer has uniform 
edge lengths but still defines a 
“tangent” plane.

• Tesselate each tangent plane with an 
asymmetric simplicial honeycomb (𝐴6 
root lattice) using edge lengths of 
associated D-simplex.

• Challenge: In the tangent plane, find 
the anisotropic bare lattice action that 
dynamically produces the desired 
ratios of edge lengths.

• That tangent plane action is the lattice 
action for the associated D-simplex on 
the 𝕊6.

• Proof of principle: critical Ising model 
on 𝕊3, E. Owen and R. Brower, 2023.

• Solve the critical D=3 Ising model on a 
general anisotropic face-centered cubic 
(FCC, aka 𝐴7root lattice).

• The isotropic FCC case has been 
solved many times: P.H.Lundow et al 
2009, U. Yu 2015.

• Under the affine conjecture, a general 
solution would enable critical Ising 
model calculations on discretized 𝕊7 
starting from 600-cell (higher-
dimensional icosahedron) and 
tessellating each regular tetrahedral 
cell with an FCC lattice.

• Note a general anisotropic FCC lattice 
has 6 unique lengths and any lattice 
can be transformed to the isotropic 
FCC lattice by affine transformation 
which also has 6 free parameters.

• Affine FCC partition function
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• Multihistogram master equation (solved iteratively)
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where 𝑅 is number of runs, 𝑁/  is length of run 𝑟, 𝐸/,1  
are energies on 𝑖-th configuration of run 𝑟.

• Observables for any other nearby 𝐾:
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• First test: 8"
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{0.94,0.97,1.00,1.03,1.06}
• 𝐾5 is tuned close to critical point.
• Solve multihistogram consistency condition

for all 35 runs, each run 𝑁9 = 50,000 configs.
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• Important: all susceptibilities peak at same 
critical coupling.

• Using multihistogram reweighting, find critical 
surface 𝐾:9;1 by identifying peak in 
𝐶𝑜𝑣(𝐸, 𝐸). In general, it is a 5-d surface with 
permutation symmetry.

• Then, along critical surface compute two-
point function:
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