
HMC using Nambu 
generalized mechanics

Erik Lundstrum
Columbia University

August 2, 2024

17/25/24



Outline

• HMC
• Extended phase space and Nambu mechanics
• Discretization of Nambu mechanics for QCD
• Preliminary test results

27/25/24



HMC 

! 𝑑𝑈 𝑂 𝑈 exp −𝑆 𝑈 = const. ! 𝑑π 𝑑𝑈 𝑂 𝑈 exp −𝑆 𝑈 − 𝑓 π .

We can add fictitious variables to the theory without changing its physical content

Accept/rejecting with H(U, π ) = 𝑆 𝑈 + 𝑓 π  will produce the correct probability distribution 
provided sample generation

• Preserves the measure 𝑑π 𝑑𝑈
• Satisfies detailed balance
• Ergodic
• (Preferably) Good preservation of H(U, π ) for high acceptance rate
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HMC cont. 
Interpret H(U, π ) = 𝑆 𝑈 + 𝑓 π  as the Hamiltonian of a mechanical system and evolve with
Hamilton’s equations 

• Preserves phase space measure
• Exact reversibility  (detailed balance)
• Frequent momenta refreshments (Ergodicity)
• Conserves (approx.) H(U, π ) 
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Additional fictitious variables

! 𝑑𝑈 𝑂 𝑈 exp −𝑆 𝑈 = const. ! 𝑑ρ 𝑑π 𝑑𝑈 𝑂 𝑈 exp −𝑆 𝑈 − 𝑓 π − 𝑙 ρ

Add additional variables provided the required properties are satisfied

• Preserves the measure 𝑑ρ 𝑑π 𝑑𝑈
• Satisfies detailed balance
• Ergodic
• (Preferably) Good preservation of H(U, π , ρ )= 𝑆 𝑈 + 𝑓 π + 𝑙 ρ  for high acceptance 

rate

These are all satisfied by Nambu’s generalized Hamiltonian dynamics
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Nambu’s generalized mechanics

• Let the three real variables (p,q,r) be a triplet of dynamical variables in a 3D phase space
• Generalization of the usual canonical pair (p,q)
• Introduce two ‘Hamiltonians’ H(p,q,r) and G(p,q,r) which determine the dynamics

Nambu postulated the following equations of motion

In the minimal extension of Hamiltonian mechanics (n=3) (Phys. Rev. D 7, 
2405)
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Introduce the vector notation �⃗� = 𝑞, 𝑝, 𝑟  

𝑑�⃗�
𝑑𝑡

= ∇𝐻	× ∇𝐺.
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Nambu Mechanics (NM) cont.
𝑑�⃗�
𝑑𝑡

= ∇𝐻	× ∇𝐺.

• The velocity field has zero divergence

• Equations of motion can be expressed as a generalized Poisson bracket called Nambu bracket

∇ ⋅ ∇𝐻×∇𝐺 = 0

�̇� = 𝐹,𝐻, 𝐺 = ∇𝐹 ⋅ ∇𝐻×∇𝐺

• This implies the separate conservation of H and G

𝐻,𝐻, 𝐺 = 𝐺,𝐻, 𝐺 = 0

Thus, Nambu equations of motion are incompressible flows in phase space
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Many-body NM

• Write

• Extend phase space to 3N dimensions 𝑥!  (i=1,…,N)

�̇� = 𝐹,𝐻, 𝐺 =
𝐹,𝐻, 𝐺
𝑞, 𝑝, 𝑟

�̇� = 𝐹,𝐻, 𝐺 =0
*+,

-
𝐹,𝐻, 𝐺
𝑞*, 𝑝*, 𝑟*
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Many body NM and Lie groups

• For SU(3) gauge links 𝑈 𝑥, 𝜇  we can associate a	𝑞* with each direction in the 
Lie algebra with derivatives of functions 𝑓 𝑈  evaluated as

• For each 𝑞* introduce a Nambu canonical triplet 𝑞*, 𝑝*, 𝑟*
• Therefore 8 𝑝* and 8 𝑟* live at each (x, µ)
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∂𝑞 𝑖,𝑥,µ 𝑓 𝑈 = 8
𝑑
𝑑𝑡
𝑓 𝑈𝑡

𝑡=0
, 𝑈𝑡 = 𝑒−𝑡𝑇𝑖𝑈 𝑥, 𝜇



Nambu mechanics for HMC
• Now we can do the HMC with molecular dynamics steps replaced by Nambu mechanics
• Phase space {U 𝑥, µ , 𝑝! 𝑥, µ , 𝑟! 𝑥, µ } (i = 1,…,8)
• For target action 𝑆" 𝑈  choose the following to be used in an accept/reject step

𝐻 = '"

9 +
)"

9 + 𝑆: 𝑈  

• Generate p and r according to 𝑒𝑥𝑝 − #
$
𝑧$  and frequently refresh for ergodicity

• Function G(U,p,r) remains to be chosen
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𝑝$ = E
%,',!

𝑝 𝑖, 𝑥, 𝜇 𝑝 𝑖, 𝑥, 𝜇 𝑟$ = E
%,(,!

𝑟 𝑖, 𝑥, 𝜇 𝑟 𝑖, 𝑥, 𝜇



Nambu mechanics for HMC (cont.)

𝐺 = α
𝑝9

2
+ γ

𝑟9

2
+ κ𝑓 𝑈 .

• Where 𝑓 𝑈  can be any arbitrary function of the gauge fields, including non-local 
ones

• Forces from non-local objects enter molecular dynamics
• Recover the appropriate distribution by making accept/reject steps on H

A safe choice for G is the general form
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Discretization for QCD
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Numerical experiments confirm these are reversible and display good conservation of H and G

• Treat two variables as fixed while evolving the third
• Each update is a continuum Nambu-Hamiltonian flow with different (H’, G’)
• Alternating application approximates continuum evolution with target H and G
• Few additional force evaluations
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Preliminary tests: 4D pure SU(3) gauge theory 

𝐺 = α
𝑝9

2 + γ
𝑟9

2 + κ𝑓 𝑈 ,

𝑓 𝑈 = Re ∑Polyakov	loops ,  

α = 	0.0, γ = −κ = 	0.5 ̇𝑝! 𝑥, µ = 𝑟! 𝑥, µ γβ𝜕) !,%,' 𝑆 𝑈 − κ𝜕) !,%,' 𝑓 𝑈

̇𝑟! 𝑥, µ = −𝑝! 𝑥, µ αβ𝜕) !,%,' 𝑆 𝑈 − κ𝜕) !,%,' 𝑓 𝑈

Parameters

�̇� 𝑥, µ 𝑈 𝑥, µ +$ = −G
!

𝑝!𝑟! α − γ 𝑇!

Equations of motion
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Plaquette and Polyakov loop autocorrelations 8, lattice
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• Adjust timestep τ until 0.80-0.85 acceptance ratio
• Run trajectory for 26 Wilson force evaluations
• HMC uses leapfrog algorithm
• Accept/reject step
• Refresh momenta

Parameters

𝐺 = α
𝑝&

2
+ γ

𝑟&

2
+ κ𝑓 𝑈 ,

γ = −α = 0.1

κ = −0.5



Plaquette and Polyakov loop autocorrelations 8, lattice
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• Adjust timestep τ until 0.80-0.85 acceptance ratio
• Run trajectory for 26 Wilson force evaluations
• HMC uses leapfrog algorithm
• Accept/reject step
• Refresh momenta

Parameters

𝐺 = 𝛾G
𝑖,.,/

𝑟 𝑥, µ, 𝑖 + κ𝑓 𝑈

γ = 0.8

κ = 30.0

Equations of motion

�̇� 𝑥, 𝜇 𝑈 𝑥, 𝜇 +$ =G
!

𝛾	𝑝!𝑇!

̇𝑝! 𝑥, 𝜇 = 𝛾𝛽𝜕0,1! 𝑆 𝑈 − 𝜅	𝑟! 𝑥, 𝜇 	𝜕0,1! 𝑓 𝑈

̇𝑟! 𝑥, 𝜇 = 𝑝! 𝑥, 𝜇 𝜅𝜕0,1! 𝑓 𝑈



Summary
• Successfully constructed a version of the HMC using Nambu 

mechanics for LQCD
• Molecular dynamics includes forces from non-local objects
• These forces exert an influence on the long-distance behavior of 

the gauge field

Next steps
• Identify non-local forces which have utility in fighting CSD
• Test with fermions and larger lattices 
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