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Introduction



Sign problem (1/2)
A large system with a complex action:
(x=(x')eR" : dynamical variable (N : #DOF)

S(x) =ReS(x)+iImS(x) e C : complex action
O(x) : observable

N

X dx e—S(X) O(X) IRN dx e—ReS(X)e—i ImS(x) O(X)

_ JR . .
(0) = J- eS0T _[ o ReS(0 g TmS () highly oscillatory
RN RN

—ReS —iImS —ReS
[odxe M MW o) [ dxe W gom)

= _ — _ ~ _0(N) (
J‘RN dx e ReS(x)e i ImS(x) /J‘RN dx e ReS(x) e

—0(1))

In MC calculations, the above estimates are accompanied by statistical errors:

<O> e_O(N) iC)(:L/ \ Nconf) (N
e_O(N) i()(1/ \ Nconf)

necessary sample size : N

conf

: sample size)

> g%N) sign problem!

conf ~v
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Sign problem (2/2)

A major obstacle for first-principles calculations in various fields
examples: - finite-density QCD
- Quantum Monte Carlo of statistical systems
- real-time dynamics of quantum many-body systems

Various algorithms have been proposed:

- Complex Langevin (CL) method [Parisi 1983, Klauder 1983]

- Lefschetz thimble method
Original (LT) [witten 2010] [Cristoforetti et al. 2012, Fujii et al. 2013]
Generalized thimble (GT) [Alexandru et al. 2015]

Tempered Lefschetz thimble (TLT) [MF-Umeda 2017, Alexandru et al. 2017]
Worldvolume HMC (WV-HMC) [MF-Matsumoto 2020]
. Path/sign optimization [Mori-Kashiwa-Ohnishi 2017, Alexandru et al. 2018]

« Tensor network [Levin-Nave 2007, Xie et al. 2014, Adachi et al. 2019, ...]
[Gu et al. 2010, Shimizu-Kuramashi 2014, Akiyama-Kadoh 2020]
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Sign problem (2/2)

A major obstacle for first-principles calculations in various fields
examples: - finite-density QCD
- Quantum Monte Carlo of statistical systems
- real-time dynamics of quantum many-body systems

Various algorithms have been proposed:

- Complex Langevin (CL) method [Parisi 1983, Klauder 1983]

- Lefschetz thimble method
Original (LT) [witten 2010] [Cristoforetti et al. 2012, Fujii et al. 2013]
Generalized thimble (GT) [Alexandru et al. 2015]

Tempered Lefschetz thimble (TLT) [MF-Umeda 2017, Alexandri) et al. 2017]
Worldvolume HMC (WV-HMC) [MF-Matsumoto 2020]
. Path/sign optimization [Mori-Kashiwa-Ohnishi 2017, Alexandru et al. 2018]

« Tensor network [Levin-Nave 2007, Xie et al. 2014, Adachi et al. 2019, ...]
[Gu et al. 2010, Shimizu-Kuramashi 2014, Akiyama-Kadoh 2020]

Today'’s talk:

Extension of WV-HMC algorithm to group manifolds [MF, in preparation]
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cf. Application to the Hubbard model
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2. Basics of the WV-HMC method



Lefschetz thimble method and ergodicity problem

To alleviate the highly oscillatory behavior,
deform the integration surface into C" : £, =R" > C"

N
Z; =0;5(2) |Q

A —

J (Lefschetz thimble) ImS(z) : const

> ImS(z) : almost const
t (sign probem alleviated)

Z:O = RN <2 ImS(x) : changes rapidly
(severe sign problem)
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Worldvolume HMC method (1/2)

[MF-Matsumoto 2012.08468]
m Worldvolume Hybrid Monte Carlo (WV-HMCQ)

HMC on a continuous accumulation of integ surfaces, R = U 24
1y

0<t<T
“"worldvolume”

R : orbit of integration surface
inthe "target space" C" =R*"

orbit of particle — worldline

/ orbitof string — worldsurface

orbit of surface — worldvolume

V\ > X (membrane)

Pros : solves the sign and ergodicity problems simultaneously
applicable to any systems once formulated by Pl with cont variables

@ major reduction of computational cost compared with TLT

- No need to introduce replicas explicitly

- No need to calculate Jacobian E! (x) = 8z'(x)/ 6x* inMD processes
- Autocorrelationis reduced due to the use of HMC [4/14]



Worldvolume HMC method (2/2)

. [MF-Matsumoto 2012.08468]
B mechanism

_[2 dx e > O(x) fz dz, e O(z,) t-independent
(0)=— =

I dxe S® J‘dzt e (%) t-independent
29 2t

T _S(z e
) Jo dte W(t)jzt dz e > )O(zt) (W (t) : arbitrary fcn)

J«T it e_w(t)j dz. e~S@) cho§en s.t. the appearance prob
° o at different t are almost the same
_ |, dtdz; e Ve O(z)

_[ dtdz, e W(g=5(2)
R t iy

< path integral over the worldvolume R

IcN
Statistical analysis method
for the WV-TLTM is established in
g P [MF-Matsumoto-Namekawa 2107.06858]

. T

> X
4\ ‘ /b \20 =R" [5/14]




Algorithm

[MF-Matsumoto 2012.08468]
Algorithm [MF 2311.10663]

(i) generation of an initial momentum
@ 7=(7)eC" e
@ 7—>reT,R

(i) constrained MD (RATTLE)

SE

N, R
/ﬂﬂz =7 —ASOV (z)— A4 (V(z)=ReS(z) +W(t(z»\\w
2'=7+Asm,

' =y, —ASOV(Z)-A'

AeN,R st. Z7eR ~
A'eN,R st 7'eT,R /

where {

.

(iii) Metropolis test

after repeating MD, we update config from zto z’'

with prob min(l, e‘H(Z"’T'”H(Zv”)) cf) RATTLE on a single thimble 7 == [Fujii et al. 2013]
RATTLE on Z; (GT-HMC) [Alexandru@Lattice2019,

. MF - Matsumoto - Umeda 2019]
(Iv) measurement

we estimate observables from the subsample

in a subreaion R =1 7 T <t(2)<T [Ref] statistical analysis method for WV-HMC:
9 R { ERl 0 <1(2) 1} [MF-Matsumoto-Namekawa 2107.06858] [6/14]



Algorithm

[MF-Matsumoto 2012.08468]
Algorithm [MF 2311.10663]

(i) generation of an initial momentum
@ 7=(7)eC" e
@ 7—>reT,R

(i) constrained MD (RATTLE)

,al

N, R

(=7 -8 @ -2 (V) =Res@) WD) ™
Z'=7+Asxy,

7' =my, —AsoV (2') - A’

{/Ie N,R st. 27eR ~
A'eN,R st 7'eT,R /

where

.

(iii) Metropolis test

after repeating MD, we update config from zto z’'

with prob min(l e—H(z',ﬂ’)+H(z,ﬂ)) A, A" can be found easily by using
the simplified Newton [#itrzO((In N)H)}
(iv) measurement [MF 2311.10663]

we estimate observables from the subsample

in a subreaion R =1 7 T <t(2)<T [Ref] statistical analysis method for WV-HMC:
9 R { ERl 0 <1(2) 1} [MF-Matsumoto-Namekawa 2107.06858] [6/14]



Comput. cost for local bosonic actions (1/2)

[MF-Matsumoto 2012.08468]
[MF-Matsumoto-Namekawa, Lattice2022]
[MF 2311.10663]

z=(z")eC" (N cV : #DOF)

1. Configuration flow 7% =0;S(z) = O(N)

2. Vector flow V; =0;0;S(z)v; = O(N) |when 3;0;5(z) is sparse
(local field case)

.RATTLE [, _ . AsV(D)-/
Z'=7+Asm,, (V(z) =ReS(z) +W (t(2)))
' =m,,—ASV ()X

A€ N,R is determined st.2’e R

For given z = z,(x) and ,

findheR, ueR", 1¢ N, R

s.t. ., (X+U)+ASA=17,(X)+Asz —As* OV (2)

This can be solved by using simplified Newton
with BiCGStab for linear inversion
(which requires only config/vector flows) = O(N)

Comput cost at each MD step is expected to be O(N)
for local field theories (with no fermion determinants)

[7/14]




Comput. cost for local bosonic actions (2/2)

[MF-Namekawa, in preparation]

B Computational cost scaling for d=4 (GT-HMC)

105E ‘
| 4
— |Complex ¢
n 10*}
o 'm=0.1, A=1.0, u=0.9, T=0.01
I:| L
— 5 4
<< 0F 4
c 96
()
£
m 1025—
Fugaku(Nnode=256) =
1 8.3x10°N —
10 5 | IH”IG I IIH”‘? I — I ll”lllg — H“I10
10 10 10 N (N :2\/) 10 10

scaling: O(V) =0O(N) (as expected)

NB: The scaling will become O(V1?)

if we reduce the MD stepsize as As ocV 7
to keep the same amount of acceptance for increasing volume 18/14]



Successfully applied to ...

— (0+1)dim massive Thirring model [MF-Umeda 1703.00861] (TLT)

— 2dim Hubbard model [MF-Matsumoto-Umeda 1906.04243, 1912.13303]
(TLT=WV-HMCQ)

— chiral random matrix model (a toy model of finite-density QCD)
[MF-Matsumoto 2012.08468] (WV-HMC(Q)

— anti-ferro Ising on triangular lattice [MF-Matsumoto 2020, JPS meeting]
(WV-HMCQ)

— complex scalar field at finite density [MF-Namekawa 2024, in preparation]
(WV-HMC(Q)

So far always successful for any models when applied,
though the system sizes are not yet very large (DOF N <10*)

[9/14]
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3. WV-HMC for group manifolds



Cauchy’s theorem for group manifolds
G : compact group (N =dimG : #DOF) [MF. in preparation]
We want to calculate the following path integral:
_[Gl du, |e*“ou,) (UO e G : dynamical variablej
IG| du, g5 S(U,) € C : complex action

(O) =

LieG : Lie alg of G with basis T, (a=1,...,N) (TaT =—T, and trT,T, = —5ab)
g, =dU,U,;' =T, 6% : Maurer-Cartan 1-form

Haar measure : |[dU, |= 8, A---A O,

The path integral does not change under
continuous deformations £, =G - X c G":

[,@u), eV o)
[ (du), eV
Here, forU,U +dU e X
6,=duU" =T 6, =T, (E.6;) (ai=1...,N)
(U); =6 A---n 6y = | dU, | [10/14]

(0) =




Path integral over the worldvolume
[MF, in preparation]

Jy, @V),, e o)
jzt (du), eV
j dte W ® jzt (du), eV o)
[dte™® jzt (du), eV
[ 1du . e FU)oU)
[ 1dU e’ F)

V(U)=ReSU)+W (tU))

dt (dUt)Zt Gmsuy . a detE s
e = ——8€ o dt |dU |
| du |R \/; (height) R/

(O) =

FU)=

[
»

>
. : U/ldu |, =y|du ‘
Constrained molecular dynamics (RATTLE) on R | (basljtarea‘)m ol
can be introduced in a similar way to the flat case (ds? =Retrd] 6, = ,,0565 )
- exact reversibility

- exact volume preservation
- approximate energy conservation to O(As?) at one MD step [11/14]
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4. Examples: 1-site model



SU(2) with a pure imaginary coupling

[MF, in preparation]
G =SU(2)

S(U) = Be(U) Egtr(Z—U —u—l) (BeiR)

analytic result: (e)=1-1,(8)/1,(B)

numerical result (WV-HMCQ):
T=02

Re(e)

2.0
1.5

1.0

-
-

H

4

0.5

0.5 1.0 1.5 2.0 2.5 ﬂ /I
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U(2) with a topological term

[MF, in preparation]
G=U(2) (NB:U(2)=SU(2)xU(L)/Z, =SU(2)xU(1))

S(U)=peU)-16q(U)
E—gtr(u +u—1)—itr(u -u)

Ar
(,B,HER)

result WV-HMQ): [ B=05 &=nz(n=1...,5)]
T=0.2

Im(q)

0.15

0.10

0.05

0l rx
[13/14]
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5. Conclusion and outlook
cf. Application to the Hubbard model
Namekawa's talk (NEXT)



Summary and outlook

B Summary : WV-HMC algorithm has been extended to group manifolds successfully

- exact reversibility
- exact volume preservation
- approximate energy conservation to O(As”) at one MD step

H Outlook
¥ Roadmap to finite-density QCD with WV-HMC :
local field
(e.g. complex scalars) —> pure YM  ——
group manifold ~ —1  (e.g. w/finite 6) . .
: [MF, MF-Namekawa-..., |—> finite-density QCD
(e.g. 1-site model) ongolng] amekawa o/ o wio Q)Y
fermions [MF-Kanamori-Namekawa-...,

(e.g. Thirring, Stephanov, Hubbard) Namekawa’s talk (NEXT)Ongomg]

¥ Developing the algorithm itself (MF, ongoing]
- incorporation of machine learning technique

- incorporation of other algorithm(s) <f) TRG for 2D YM:
[MF-Kadoh-Matsumoto 2107.14149,

(e.g.) path optimization and/or tensor RG (non-MC) MF-Kuwahara, ongoing]
V¥ Important in the near future : MC for real-time dyn of quant many-body systems

first-principles calculations of non-equilibrium processes
(such as the early universe, heavy-ion collision experiments, new devices, ...) [14/14]



Thank you.
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NB: Details of WV-HMC algorithm (1/5)

W RATTLE

M =7 : Lefschetz thimble

M =Y : deformed surface

HMC on a submanifold M in C" =R*"

original (LT-HMC) [Fujii et al. 2013]

Generalized thimble HMC (GT-HMC) [Alexandru@Lattice2019,
MF-Matsumoto-Umeda 2019]

M =R : worldvolume [MF-Matsumoto 2020]

Worldvolume HMC (WV-HMC)

BLT-HMC / GT-HMC

CN :RZN
dze*®0O(z) 7
(0) = .[z 75(2) %o =J
j dze z Zz+dz
X =
parametrization of X 1N ,ﬂ
7= (2'(x)) with x=(x*) (;;1:::::,\') oW N
. i i a X X+ dx 20 =R
Jacobian | E, =0z'/Ox

dz=dz' A---Adz" =det E dx

induced metric

ds2 =| dz' (x) = 7,0'dX" (7, =ReELE, = ELE})

invariant volume element ||dz|=|det E | dx = /y dx

[15/14]



NB: Details of WV-HMC algorithm(2/5)

Here, for || dz | =|det E | dx=\/?dx , we have

|dz| = [y dx = dxdpe @27" papbzm
w=dp, Adx® (symplectic 2-form)

_(]jz);/ Pa Py I:()/ab) (J/ab) }

dz
Substitute this to Z = J. dze®® = J' |dz | e ReS@)  —— g 1ImS(@)

| dz|
o H(x, p)= —yab P, p, + ReS(z(x)) “parameter-space
Z :J.Tz—e_H(X’p)]-“(x) with < representation”
N! ]—"(x)— e'!™(@ (reweighting factor)
\ |d| o 2
Furthermore, we introduce 7' = p°E, €T,%, which gives _
— . 2t =X
{(a) —)dp, Adx* =Redz AdZ ,
b ; flow
7/ pa pb =TT N
~ 5, =R
- 1
a)N H(z,7)=—7n"'7w+ReS(2)
Z —j e "M F(z) with - 2 “target-space representation”
T2 | —| ImS(z
N F(2)= (2)
IdZI

no need to calculate the Jacobian detE = \/; [16/14]



NB: Details of WV-HMC algorithm(3/5)

-

H(z,7) Z%ETE-I- ReS(2)

N
—_ a) _H(Z!ﬂ-) 1
Z=|_—=¢ F(z) with < |
ITZ NI F(z) = | 32 | LU
VA

S [oh
Algorithm of GT-HMC /\
J

(i) generation of an initial momentum
- i _ats
D 7#=(7)eC" e "7
@ 7—>reTlX

(i) constrained MD (RATTLE)
7y, =1 —AsoV (z)— A (V(z)=ReS(2))
2'=7+ASmy, X

flow

X' =X+U —
n'=m,,—AsoV(Z)- A >, =R
{l eN,X st z'eX can be easily found with the simplified Newton
where

' ' MF 2311.10663]
A'eN,Sst 7'eT,s [ | .
=N " e (corresponds to the “fixed-point method”

for LT-HMC [Fujii et al. 1309.4371])

(i) Metropolis test

after repeating MD steps, we update config

from zto z' with prob min(l, e_H(Z"”%H(Z’”)) (17/14]



NB: Details of WV-HMC algorithm(4/5)

[MF-Matsumoto 2012.08468]
B WV-HMC o IR dt dz, e 5@ WO 0(z,) z,
= [ dtdze ooz
R t

parametrization of R _ i

O with % (96) (90 g g gy | 1= LN o)

2=(2'(%) with x=(%)=(F=t.%=x) | 4=01 N §t/  avdr,y
a=1...,N /

. > —— adt | dz

"Jacobian" | E, =0z' / 0X* (height)
> i >3,
: o = A dz; |=+/y dx
induced metric  ds; =|dz'(x)[’=7,,d "dX" (7, =E.E}) | (btaLe ;/Za)
= o?dt? + y, (dx* + B2dt)(dx” + B°dt)

invariant volume element |dz|, =+/7 d% = a./y dt dx = adt | dz, | |

) oA R R R — . a’}N+1 t
Also, 7' = p“E, = @=dp, AdX* =Redz' A dZ' — | dt]|dz, |=———e W77y

- +1)!
\/?df( — dg dﬁe_(ﬂz) P Puby _ o~ W2)z'z
(N +1)! _

‘ ZITR(N 1)1

~ N+1
(0]

e H@D r(z) with |

H (z,7) = %;ﬁm ReS(z) +W (t(2))

F(2)=a(2) ﬂe_i ImS(z)

| dz, |

[18/14]



NB: Details of WV-HMC algorithm(5/5)

[MF-Matsumoto 2012.08468]
Algorithm [MF 2311.10663]

(i) generation of an initial momentum
@ 7=(7)eC" e
@ 7—>reT,R

(i) constrained MD (RATTLE)

,ﬁl

N, R
7Ty, =T —ASOV (2)— A (V(z)=ReS(z) +W (t(2)))
Z'=7+ASmy,,

' =y, —ASOV(Z)-A'

AeN,R st. 77eR

where
{/I'e N, R st 7'eT,R

(iii) Metropolis test

after repeating MD, we update config from'zto z'

with prob min(l, e—H(Z‘,ﬂ')+H(z,ﬂ)) c[::nr; t2)§1e1a1si)l)6/6f§]und with the simplified Newton
(corresponds to the “fixed-point method”

(iv) measurement for LT-HMC [Fujii et al. 1309.4371])
we estimate observables from the subsample
in a subregion R :{ 7 e leo <t(z) S'fl} [Ref] statistical analysis method for WV-HMC:

[MF-Matsumoto-Namekawa 2107.06858] [19/14]
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