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1 Basics

The aim of these notes is to review some concepts which will be assumed for the school, and
also provide some example problems with which you can test your understanding. Throughout,
we will work in natural units so ~ = c = 1.

2 Quantum Field Theory

We will build on ideas already encountered by the reader, where the assumed structure of this
knowledge can be summarised as in figure 1. On the left-hand side, we have classical mechanics,
in which there are two types of entity - particles and fields. The former obey Newton’s laws, but
can also be described by the Lagrangian or Hamiltonian formalisms. The power of the latter
approach is that one can also describe fields using such a framework, as we will see. In the upper
right-hand corner, we have the quantum mechanics of particles. As the reader is no doubt aware,
there is a well-defined prescription for taking any classical particle theory and progressing to the
appropriate quantum theory (i.e. moving from left to right in the upper row of the figure). It is
also possible to describe quantum particles which interact with a classical field (e.g. a quantum
charged particle in an electromagnetic field). However, it is perhaps not yet clear how to fill in
the box in the lower-right-hand corner. That is, how to make a quantum theory of fields. We’ll
see how this works in September - for now let us go over the other boxes in figure 1, beginning
with the classical column on the left-hand side.

Figure 1: Schematic representation of the relationship between particles and fields, in both a
classical and quantum setting. The QFT course concerns the lower right-hand corner.

2.1 Classical Mechanics

2.1.1 Particles

In this section, we review the Lagrangian formalism for classical point particle mechanics. A
given particle has a kinetic energy T , and a potential energy V . From these one may form the
Lagrangian

L = T − V. (1)
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As an example, a particle moving in one dimension x with time coordinate t has

L =
1

2
mẋ2 − V (x), (2)

where the dot denotes differentiation with respect to t. In general, V and T will depend on
more than one space coordinate, and these may not necessarily be orthogonal. The coordinates
may also have dimensions other than that of length (e.g. a dimensionless angle θ is the most
convenient way to describe a pendulum).

Now consider a particle which follows a path between fixed positions x1 and x2, at times
t1 and t2 respectively. There are infinitely many paths connecting these positions. However, a
classical particle follows only one path, namely that which extremises the action

S =

∫ t2

t1

L(ẋ, x)dt. (3)

Here we have continued to assume a one-dimensional system, but the generalisation to more
complicated cases is straightforward. This is known as the principle of least action, as S is usu-
ally minimised, and we can use eq. (3) to find an equation for the path followed by the particle,
as follows.

Let x̃(t) be the path followed by the particle, defined above as the path which extremises
the action. We may then perturb the path by a small amount, writing

x(t) = x̃(t) + ε(t) (4)

for some small correction ε(t), where ε(t1) = ε(t2) = 0 due to the fixed endpoints. This in turn
will perturb the action, and substituting eq. (4) into eq. (3) one finds

S =

∫ t2

t1

L( ˙̃x+ ε̇(t), x̃(t) + ε(t))dt

=

∫ t2

t1

[(
∂L

∂ẋ

)
ε̇(t) +

(
∂L

∂x

)
ε

]
dt+ S[x̃(t)], (5)

where we have Taylor expanded L as a function of its arguments, and used the chain rule. One
may perform an integration by parts in the first term to rewrite eq. (5) as

S = S[x̃(t)] + δS, (6)

where

δS =

[
ε(t)

(
∂L

∂ẋ

)]t2
t1

+

∫ t2

t1

[
− d

dt

(
∂L

∂ẋ

)
+

(
∂L

∂x

)]
ε(t)dt = 0, (7)

where the final equality follows from the fact that the action is extremised by the path x̃(t). In
fact, the first term in eq. (7) vanishes due to the fact that ε(t) = 0 at the endpoints, so that the
principal of least action dictates that the second term vanishes, for arbitrary perturbations ε(t).
Thus one has

d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
. (8)

This is the Euler-Lagrange equation, and substituting eq. (2) we see that it is equivalent (in our
one dimensional example) to

d

dt
(mẋ) = −∂V

∂x
, (9)

which is Newton’s Second Law. The Lagrangian method does a lot more, however, than allow
us to rederive Newton’s law. In particular:
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1. Lagrangian methods greatly simplify the analyses of systems in many dimensions, and
where the generalised coordinates may not be simple position variables (one may check
that the Euler Lagrange equation has the same form for any generalised coordinate).

2. One may show quite generally in the Lagrangian approach that symmetries of a system
(e.g. temporal or spatial translation invariance, rotational invariance) correspond to con-
served quantities.

3. One may easily extend the Lagrangian approach to fields as well as particles, which we
outline in the next section.

Before considering field theory, it is convenient to also introduce a few additional concepts.
Firstly, given a Lagrangian L involving a coordinate x, one may define the canonical momentum

p =
∂L

∂ẋ
, (10)

where p is said to be conjugate to x1. We may then define the Hamiltonian

H(p, x) = pẋ(p, x)− L((ẋ(p, x), x), (11)

where we have used the fact that ẋ may be regarded as a function of x and p. Above, for
example, ẋ = p/m and one finds

H(x, p) =
p2

2m
+ V (x), (12)

which is the total energy (T + V ) of the particle. When more than one coordinate is involved,
the analogue of eq. (11) is

H =
∑
n

pnq̇n − L(qn, pn), (13)

where the {qn} are the relevant generalised coordinates, and the canonical momenta are given
by

pn =
∂L

∂q̇n
. (14)

One may again interpret H as the total energy of the system. Furthermore, one may replace
the Euler-Lagrange equations with a more symmetric-looking set of first order equations. Dif-
ferentiating H at constant p, one finds(

∂H

∂x

)
p

= p
∂ẋ

∂x
− ∂L

∂ẋ

∂ẋ

∂x
− ∂L

∂x

=
∂ẋ

∂x

(
p− ∂L

∂ẋ

)
− ∂L

∂x

= −ṗ, (15)

where we have used eq. (11) in the first line and eq. (8) in the second. Similarly, one may find(
∂H

∂p

)
x

= ẋ. (16)

Equations (15) and (16) constitute Hamilton’s equations, and they are particularly useful in
relating symmetries to conservation laws. For example, if H does not depend on the position x,

1For our above example, p = mẋ and corresponds to the familiar definition of momentum. This is not
necessarily the case for more complicated generalised coordinates.
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Figure 2: The transverse displacement f(x, t) along a string.

then one finds that momentum is conserved directly from eq. (15). As another example, consider
differentiating H with respect to t:

dH

dt
=
∂H

∂t
+
∂H

∂x
ẋ+

∂H

∂p
ṗ

=
∂H

∂t
, (17)

where we have used Hamilton’s equations in the second line. It follows that the left-hand side
vanishes if H does not explicitly depend on t. That is, energy is conserved in a system which is
invariant under time translations.

2.1.2 Fields

In classical mechanics, one does not only have particles. There may also be fields, which cre-
ate forces on particles e.g. charged particles in an electromagnetic field, massive particles in a
gravitational field. A particle is specified by its trajectory in space xi(t), where {xi} are the
coordinates. A field, on the other hand, is specified by its value in space and time. For example,
a given electric field may be written as E(x, t), denoting explicitly the dependence on all space
and time coordinates. The quantity E here is a vector. However, fields in general may be scalar,
vector or more generalised types of mathematical object such as spinors and tensors. We will
consider only the case of scalar fields in the QFT course, although more complicated examples
will occur in the QED / QCD course.

As a simple example of a scalar field, let us consider an example of a field in one space
dimension, namely the transverse displacement f(x, t) of a guitar string. This depends on the
position along the string, x, as well as the time t and thus is indeed a field. How do we describe
such a system? Just as in the case of point particles, we may construct the Lagrangian L = T−V .
The kinetic energy at time t is given by

T =

∫
dx

1

2
ρḟ2(x, t). (18)

Here ρ is the density (mass per unit length) of the string, and ḟ(x, t) the transverse speed of the
string at position x. One then integrates over all positions to obtain the total energy. Similarly,
the total potential energy is

V =

∫
dx

1

2
σ(f ′)2(x, t), (19)
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where σ is the tension of the string, and the prime denotes differentiation with respect to x
rather than t. One may then write

L =

∫
dxL(f, ḟ , f ′, t), (20)

where

L =
1

2
ρḟ2 − 1

2
σ(f ′)2, (21)

is the Lagrangian density, which we may also write as T − V, with T and V the kinetic and
potential energy densities respectively. This structure is analogous to the point particle case, but
note that the field, and not the coordinate x, appears in the Lagrangian density. The principle
of least action states that the action

S =

∫
dt

∫
dxL(f, ḟ , f ′, t) (22)

should be extremised. This leads to the field theory version of the Euler-Lagrange equation:

∂t
∂L

∂(∂tf)
+ ∂x

∂L
∂(∂xf)

=
∂L
∂f

. (23)

In the course, we will be concerned with applying the above ideas in a relativistic context, and
the appropriate generalisation of the Euler-Lagrange equation is

∂µ
∂L

∂(∂µf)
=
∂L
∂f

, (24)

where ∂µ = ∂/∂xµ.

In the QFT course, we will give a fuller exposition of classical field theory. For now, let us
note that, analogously to point particles, one may define the canonical momentum conjugate to
the field f :

π(x, t) =
∂L
∂ḟ

. (25)

One may then construct the Hamiltonian density

H(f, π) = πḟ − L, (26)

whose integral over x gives the total energy carried by the field.

2.2 Quantum Mechanics

In the last section, we reviewed the Lagrangian treatment of classical mechanics, for point par-
ticles and for fields. In this section, we consider quantum mechanics. More specifically, we
consider the quantum theory of point particles. We will not consider the quantum theory of
fields here (i.e. that is the point of the course!). However, we will later see that some of the
concepts introduced here are relevant to QFT.

To turn a classical point particle theory into a quantum theory, one replaces position and
momentum variables by operators. To be more specific, let us take the one-dimensional theory
whose Hamiltonian is given by eq. (12). Considering the position-space wavefunction Ψ(x, t) for
the particle, the position, momentum and energy operators are given by

x̂ = x, p̂ = −i ∂
∂x
, (27)
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from which it is easily shown that the position and momentum operators satisfy

[x̂, p̂] = i. (28)

The wavefunction satisfies the Schrödinger equation

ĤΨ(x, t) = i
∂Ψ

∂t
, (29)

where Ĥ is the Hamiltonian operator (obtained straightforwardly from eq. (12))

Ĥ =
p̂2

2m
+ V (x̂). (30)

Inserting eq. (27), one obtains the explicit differential equation[
− 1

2m

∂2

∂x2
+ V (x)

]
Ψ(x) = i

∂Ψ

∂t
. (31)

In the next section, we consider a particular system which will later be useful for QFT, namely
the quantum harmonic oscillator.

2.2.1 The Quantum Harmonic Oscillator

The harmonic oscillator is defined by the Hamiltonian of eq. (12) with

V (x) =
1

2
mω2x2, (32)

where m is the mass of the particle in the harmonic potential well, and ω is the period of
oscillation. In the quantum theory, one may use the fact that Ĥ does not depend explicitly
upon t to set Ψ(x, t) = ψ(x)Θ(t) in eq. (29). Dividing also by Ψ, one finds

1

ψ(x)
Ĥψ(x) =

i

Θ(t)

dΘ(t)

dt
. (33)

The left-hand and right-hand sides are functions only of x and t respectively, thus must be
separately equal to a constant E. The left-hand side then gives

Ĥψ(x) = Eψ(x), (34)

which is the time-independent Schrödinger equation. Given that Ĥ represents the total energy
operator of the system, it follows that solutions of eq. (34) are energy eigenfunctions with en-
ergy E. The right-hand side can be solved easily to give the time dependence of the energy
eigenfunctions, and need not be considered in what follows.

One may show that, as expected for a confining potential well, there is a discrete spectrum
of energy eigenvalues {En}. One way to show this is to explicitly solve eq. (31) as a differential
equation with the appropriate form of V (x). However, there is a simpler way to obtain the
energy spectrum which will be useful later on when we consider QFT.

Let us define the operators

â =
1√
2

(
√
mωx̂+ i

√
1

mω
p̂

)
, (35)

â† =
1√
2

(
√
mωx̂− i

√
1

mω
p̂

)
. (36)
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It is straightforward to check from eq. (28) that

[â, â†] = 1. (37)

Furthermore, the Hamiltonian operator may be written in terms of â and â† as

Ĥ = ω

(
â†â+

1

2

)
= ω

(
ââ† − 1

2

)
=
ω

2

(
â†â+ ââ†

)
, (38)

from which it follows that
[Ĥ, â] = −ωâ, [Ĥ, â†] = ωâ†. (39)

Now consider the set of energy eigenstates {|n〉}. That is,

Ĥ|n〉 = En|n〉. (40)

Acting on the left with â† and using eq. (39), one finds

â†Ĥ|n〉 = (Ĥâ† − ωâ†)|n〉 = Enâ
†|n〉, (41)

and thus
Ĥ(â†|n〉) = (En + ω)(â†|n〉). (42)

We therefore see that â†|n〉 is an eigenstate of Ĥ with eigenvalue En+1, i.e.

â†|n〉 ∝ |n+ 1〉. (43)

Likewise, one may show that
Ĥ(â|n〉) = (En − ω(â|n〉). (44)

and thus that
â|n〉 ∝ |n− 1〉. (45)

Based on eqs. (43) and (45), â† and â are referred to as raising and lowering operators respec-
tively, and collectively as ladder operators.

Let us now show that there is a minimum energy state. This follows from the fact that the
norm of any state |φ〉 must be non-negative i.e.

〈φ|φ〉 ≥ 0. (46)

Consider the state |φ〉 = â|n〉. The conjugate of this state, as can be found from eqs.(35) and
(36), is 〈n|â†, so that

〈n|â†â|n〉 ≥ 0. (47)

However, using eq. (38) we may rewrite this as

〈n|

(
Ĥ

ω
− 1

2

)
|n〉 = 〈n|

(
En
ω
− 1

2

)
|n〉

=
En
ω
− 1

2
≥ 0, (48)

where we have assumed the normalisation 〈n|n〉 in the second line. We thus find that the
minimum energy state |0〉 has energy E0 = ω/2. The first excited state of the system is

|1〉 = â†|0〉 (49)
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and has energy (1 + 1/2)ω. The nth excited state has energy (n+ 1/2)ω, and is given by

|n〉 =
1√
n!

(â†)n|0〉, (50)

where the prefactor guarantees that 〈n|n〉 = 1. Thus we may write the action of the Hamiltonian
(eq. (38)) as

Ĥ|n〉 =

(
â†â+

1

2

)
ω|n〉 =

(
n̂+

1

2

)
|n〉, (51)

where n̂ = â†â is the number operator. That is, |n〉 is an eigenstate of n̂, which has energy
eigenvalue (n + 1/2)ω so that the number n represents the number of quanta with energy ω
which have been introduced to the ground state |0〉 of the system. We may think of â† and â as
creating and annihilating quanta respectively, i.e. as creation and annihilation operators.

2.2.2 The Schrödinger, Heisenberg and Interaction Pictures

QM is usually taught at undergraduate level in terms of what is called the “Schrödinger picture”.
In this view, the particle state (i.e. the wavefunction) is a function of time, while the operators are
constant (unless they have an intrinsic time dependence). Specifically, between measurements,
the time dependence of the particle state |ψ(t)〉 is given by

i
∂|ψ〉
∂t

= Ĥ|ψ〉 (52)

which has a general solution for time-independent Hamilton operators of

|ψS(t)〉 = e−itĤ |ψ0,S〉 (53)

where |ψ0,S〉 is the state at the last measurement, take as t = 0 for convenience. We keep the
subscript “S” to highlight that the state is defined in the Schrödinger picture. If at a later time
we measure a quantity corresponding to a (Schrödinger) operator ÔS , we find

〈ÔS(t)〉 = 〈ψS(t)|ÔS |ψS(t)〉 = 〈ψ0,S |eitĤÔSe−itĤ |ψ0,S〉 . (54)

The last step makes clear that the way we set up QM is not unique! Instead of working in
the “Schrödinger picture”, we can introduce the “Heisenberg picture” which puts all the time
dependence into the operators,

ÔH(t) = eitĤÔSe
−itĤ (55)

and the above equation becomes

〈ÔH(t)〉 = 〈ψH |ÔH(t)|ψH〉 . (56)

with the particle state being manifestly constant over time |ψH〉 = |ψ0,S〉.
We are only shuffling the time dependence between states and operators. More precisely we

perform a basis transformation as a function of time. From the above equation we can see that
the transformation matrix is given by

ÔH(t) = eitĤÔSe
−itĤ = Û †(t)ÔSÛ(t) (57)

with Û(t) = e−itĤ being the time evolution operator (in the Schrödinger picture). The time
evolution can be calculated by taking the time derivative of the above equation:

∂

∂t
ÔH = i[Ĥ, ÔH ] (58)
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Physical quantities are unaffected by how we choose our basis. This means we could have
dropped 〈ÔS〉 = 〈ÔH〉 = 〈Ô〉: the expectation value of an observable depends only on the physics
encoded in the operator and initially prepared state and not on how we choose our basis. Since
Ĥ commutes with itself, the Hamiltonian operator has no time dependence so ĤH = ĤS at all
times and the subscripts are usually suppressed (as we have done in this section throughout).

It is convenient to use the Schrödinger picture for single particle quantum mechanics as
in this case the particle position is an observable. The initial wavefunction (in the spatial
representation) is |ψ0(x)〉, so that the state at a later time is |ψ(x, t)〉. This keeps the space
and time components together, making the transition to a relativistic single particle QM much
easier. In contrast, a field does not have a measurable position, but has an amplitude at all
points in space. Hence position is no longer an observable but position becomes a label, e.g. we
observe the amplitude of the field at a particular position. Therefore, when quantising a (non-
interacting) field in QFT, then the operator for an observable depends on position, i.e. ÔS(x). If
we used the Schrödinger picture, we would still have the time dependence in the wavefunction.
Hence, by changing to the Heisenberg picture when quantising fields, we have ÔH(x, t) so we
again keep the space and time components together.

There is a third view, the “Interaction picture” (or “Dirac picture”), which is useful when
working with perturbation theory, as we will do in QFT. In these cases, the Hamiltonian has a
piece which can be solved analytically Ĥ0 and an “interaction” piece Ĥ1 which we handle as a
(hopefully) small perturbation on the solutions of Ĥ0:

Ĥ = Ĥ0 + Ĥ1 (59)

In this picture, we choose to put the time dependence resulting from the soluble part of the
Hamiltonian into the operators and the rest goes into the particle state. This means the time
dependence of the state is just due to the interaction term and so this picture becomes equivalent
to the Heisenberg picture as the interaction strength goes to zero. Specifically

ÔI(t) = eitĤ0ÔSe
−itĤ0 (60)

and using invariance of physical observables under this transformation

〈O〉 = 〈ψS(t)| e−itĤ0eitĤ0︸ ︷︷ ︸
=1

ÔS e
−itĤ0e+itĤ0︸ ︷︷ ︸

=1

|ψS(t)〉 . (61)

we see
|ψI(t)〉 = eitĤ0 |ψS(t)〉 = eitĤ0e−itĤ |ψ0〉 = Ũ(t)|ψ0〉 . (62)

This implies a time evolution of the Interaction picture states

i
∂

∂t
|ψI(t)〉 = eitĤ0 (H −H0)︸ ︷︷ ︸

=H1

e−itĤ |ψ0〉 = eitĤ0H1 e
−itĤ0e+itĤ0︸ ︷︷ ︸

=1

e−itĤ |ψ0〉 = H1,I |ψI(t)〉 , (63)

i.e. the states transform only with the interaction piece of the Hamiltonian in the Interaction
basis. The relation with the Heisenberg picture operators is

ÔH(t) = eitĤÔSe
−itĤ = eitĤe−itĤ0eitĤ0ÔSe

−itĤ0eitĤ0e−itĤ = eitĤe−itĤ0ÔI(t)e
itĤ0e−itĤ (64)

and hence
ÔH(t) = Ũ †(t)ÔI(t)Ũ(t) (65)

The time evolution of an operator in the Interaction picture can be read off Eq. (60)

∂

∂t
ÔI = i[Ĥ0, ÔI ] . (66)
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Note for general (i.e. non-commuting) matrices A and B that eAeB 6= eA+B, so generally

U(t) 6= e−itĤ1 . However if H0 and H1 commute, we see the principle strategy that motivates the
Interaction picture: If we collect all interactions into H1 then the time dependence of operators in
the Interaction picture is given by the free (i.e. non-interacting) theory only, the time evolution
of states feels only the interaction piece.

2.3 Index notation and relativity

For the “normal” three-vectors, the indices are usually written with Roman indices, e.g. ai for
i = 1, 2, 3. The dot product of two vectors can be written as a.b = aibi, where the Einstein
summation convention is used, namely that any repeated index is implicitly being summed over,
so this is equivalent to writing a.b =

∑
i aibi. This means any repeated index is a dummy index

and so can be relabelled at will, e.g. aibi = ajbj . The vectors can be considered as column
vectors

a =

a1a2
a3

 (67)

The dot product is then

bTa =
(
b1 b2 b3

)a1a2
a3

 (68)

This can be generalised to matrices. A rotation of a vector by a rotation matrix R can be
written as a′ = Ra which in terms of column vectors and explicit matrices isa′1a′2

a′3

 =

R11 R12 R13

R21 R22 R23

R31 R32 R33

a1a2
a3

 i.e. a′i = Rijaj (69)

Note the order of the indices for the matrix is important since generally Rij 6= Rji = (RT )ij .
The convention is that the first index gives the row number and the second index the column
numbers. By the usual rules of matrix multiplication, the column index is the one which is
summed with the vector. The trick to converting from index-type equations to matrix-type
equations and vice versa is then simple; make sure the summed indices are next to each other,
as for j above. Similarly, for the inverse equation, we would write a = R−1a′, which is found
from the original equation by

(R−1)kia
′
i = (R−1)kiRijaj = δkjaj = ak (70)

where δkj = Ikj , i.e. the unit matrix. Note, the unsummed indices on both sides of any equation
must match, as shown by k in the above. Another common property of a matrix is its trace,
meaning the sum of the diagonal elements. Using Einstein summation, the trace is simply
written as

Tr(R) = Rii (71)

and hence any expression with the first and last index repeated means take the trace. For
example, AijBjkCki means multiply the matrices A, B and C together and then find the trace
of the result.

Matrices themselves also change under a rotation. The simple rule is that “each index is
rotated independently”. A vector has one index and so needs one rotation matrix to transform
it, as shown above. A matrix, with two indices, therefore needs to be multiplied by two rotation
matrices. Explicitly for matrix Mij , then

M ′ij = RikRjlMkl (72)
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Note, each term in the above (which has two implied summations, of course) is a simple number,
not a matrix and so they can be rearranged at will. Hence, we could also write

M ′ij = RikMklRjl = RikMkl(R
T )lj (73)

which now brings all the summed index pairs together and hence is in the right form to convert
to a matrix-type equation, namely M′ = RMRT .

There is one particular tensor which we will use, namely the Levi-Civita antisymmetric tensor
εijk. This is defined by ε123 = 1 and then every exchange of any two of the three indices changes
the sign, so e.g. ε321 = −1, ε312 = 1, etc. If it has a repeated index, then it is zero. This should
transform as

ε′ijk = RilRjmRknεlmn (74)

but due to the properties of a rotation matrix, this gives ε′ijk = εlmn, i.e. this tensor is invariant
under rotations. Note, the Kronecker delta symmetric tensor δij has the same property of
invariance also.

When we get to relativity, then the indices become a little more complicated as they can be
subscripts or superscripts. Let S′ (coordinates (t′, x′, y′, z′)) be an inertial frame moving with
speed v along the x axis with respect to a second inertial frame S (coordinates (t, x, y, z)). The
Lorentz transformation relating the two sets of coordinates is

t′ = γt− βγx, x′ = γx− βγt, y′ = y, z′ = z, (75)

where β = v, γ = 1/
√

1− v2 and we work in natural units such that the speed of light c = 1.
This can be written as 

t′

x′

y′

z′

 =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1



t
x
y
z

 (76)

In general, any Lorentz transformation can be represented by a 4× 4 matrix Λ as follows:

x′µ = Λµνx
ν , (77)

where the convention is to use Greek indices for four-vectors, and µ, ν = 0, 1, 2, 3. Vectors
Aµ and Bµ that transform like xµ and xµ are sometimes called contravariant and covariant
respectively. A simpler pair of names is vector and covector. To convert between the two, we
use the metric g

xµ = gµνx
ν (78)

where g is given by

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (79)

Hence
xµ = (t, r) while xµ = (t,−r) (80)

Generally, you can think of g as being the way to raise (or lower) an index on any Lorentz
quantity, not just a vector. A particularly important covector is obtained by letting ∂/∂xµ act
on a scalar φ:

∂φ

∂xµ
≡ ∂µφ . (81)
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Note, this means

∂µ =

(
∂

∂t
,∇
)

and so ∂µ =

(
∂

∂t
,−∇

)
(82)

which therefore has the ± the opposite way round to usual; it is a common mistake to get this
wrong. However, this is essential as then

p̂µ = (Ê, p̂) = i∂µ =

(
i
∂

∂t
,−i∇

)
(83)

gives the correct sign for p̂, as known from QM.
The dot product of two four-vectors x and y is defined as

x · y ≡ xµyνgµν = xµyνg
µν = xµyµ = xµy

µ . (84)

In particular x2 is given by
x2 = x · x = xµxµ . (85)

If x · y = 0, x and y are orthogonal. A four-vector x is said to be light-like if x2 = 0; time-like if
x2 > 0; space-like if x2 < 0.

3 QFT Problems

Here are some problems to check your understanding of the above material.

3.1 Classical Mechanics

1. Show from the Euler-Lagrange equation that adding a constant to the potential energy V
of a system is irrelevant i.e. does not affect the equations of motion.

2. A particle of mass m moves in the gravitational potential near the Earth’s surface with
height z. Write down the Lagrangian, and show that the equations of motion are what
you would expect. Derive also the Hamiltonian, and show that this is indeed the total
energy of the particle.

3. Write down the Lagrangian for the motion of a particle of mass m in a spherically sym-
metric potential V = V (r). You may use the fact that the dot product in spherical polar
coordinates (r, θ, φ) is given by

a · b =
(
ar aθ aφ

) 1 0 0
0 r2 0
0 0 r2 sin2 θ

 br
bθ
bφ

 .

Show that the radial equation of motion is given by

r̈ − r(θ̇2 + sin2 θφ̇2) +
1

m

dV

dr
= 0.

Also show that the Hamiltonian of the particle is

H =
1

2m

(
p2r +

p2θ
r2

+
p2φ

r2 sin2 θ

)
+ V (r).

Show explicitly that pφ is the angular momentum Lz. Hence, what conserved quantity
does the independence of the Hamiltonian on the azimuthal coordinate φ correspond to?

13



3.2 Classical Field Theory

4. Give examples of (a) a scalar field in three dimensions; (b) a vector field in three dimen-
sions. Point particle mechanics can be considered as a field theory in zero space dimensions.
Why?

5. For the field theory whose Lagrangian density is given by eq. (21), show that the Euler-
Lagrange equation (eq. (24)) has the form

∂2f(x, t)

∂x2
=
ρ

σ

∂2f(x, t)

∂t2
.

Do you recognise this equation? Write down the canonical momentum conjugate to f , and
the Hamiltonian density. Verify that the integral of the Hamiltonian density is the total
energy carried by the field.

6. Consider the action

S =

∫
d4xL(∂µφ, φ)

for a relativistic field φ. Show that the principle of least action implies the Euler-Lagrange
equation of eq. (24). The proof is analogous to the point particle case.

3.3 Quantum Mechanics

7. Starting from the Schrödinger equation for the wave function ψ(x, t), show that the prob-
ability density ρ = ψ∗ψ satisfies the continuity equation

∂ρ

∂t
+ ∇ · J = 0 , (86)

where

J =
1

2im

[
ψ∗(∇ψ)− (∇ψ∗)ψ

]
. (87)

What is the interpretation of J?

8. One may derive the Schrödinger equation for a free particle (V = 0) in three space dimen-
sions by starting with the kinetic energy definition

E =
p2

2m
,

and substituting

E → i
∂

∂t
, p→ −i∇,

which operate on a wavefunction Ψ(x, t)) to get[
− 1

2m
∇2

]
Ψ = i

∂Ψ

∂t
.

Show that carrying out the same procedure on the relativistic kinetic energy relation

E2 = p2 +m2,

one gets the equation (
� +m2

)
Φ = 0 (88)
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for some wavefunction Φ(x, t), where

� =
∂2

∂t2
−∇2

is the d’Alembertian operator. Equation (88) is the Klein-Gordon equation for relativistic
scalar particles.

9. Verify eqs. (37), (38) and (39).

10. Check the normalisation of the state |n〉 in eq. (50). Hint: show that if |n〉 is correctly
normalised, then so is â†|n〉 ∝ |n+ 1〉.

11. Show for any two Hermitian operators Â and B̂ that i[Â, B̂] is also a Hermitian operator.

Using the Heisenberg operator definition

ÔH(t) = eitĤÔSe
−itĤ (89)

show that
∂ÔH
∂t

= i
[
Ĥ, ÔH

]
=
(
i
[
Ĥ, ÔS

])
H

(90)

where the final expression denotes the Heisenberg picture operator corresponding to the
Schrödinger picture operator formed from i times the commutator of Ĥ with ÔS .

12. This question looks at a simple equivalent to going from bosons to fermions in QFT.

Every operator commutes with itself so, including eq. (37), we can trivially write

[â, â] = 0, [â†, â†] = 0, [â, â†] = 1 (91)

Also, using eq. (38), the Hamiltonian operator can be written

Ĥ =
ω

2

(
â†â+ ââ†

)
=
ω

2
{â†, â}, (92)

let’s explore what happens if we change the commutators to anticommutators and vice
versa, i.e.

{â, â} = 0, {â†, â†} = 0, {â, â†} = 1 (93)

and
Ĥ =

ω

2
[â†, â] (94)

Verify the commutators of the Hamiltonian operator with â and â† are the same as previ-
ously given in eq. (39). This means â and â† still act as ladder operators, and so change
the energy by ±ω.

However, starting from eq. (47), show that we now have

En
ω
≥ −1

2
(95)

Applying a similar argument to 〈n|ââ†|n〉, show that

En
ω
≤ 1

2
(96)

What do you deduce about the number of possible states? Is this a surprise given that
eq. (93) implies ââ = 0 and â†â† = 0?
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Using eqs. (35) and (36), show that x̂ and p̂ now satisfy

{x̂, x̂} =
1

mω
, {p̂, p̂} = mω, {x̂, p̂} = 0 (97)

and that

Ĥ =
iω

2
[x̂, p̂] (98)

Show that the Heisenberg operators for x̂ and p̂ obey the classical equations of motion and
so this new system does still represent a quantised harmonic oscillator.

(Clearly, the above anticommutators for x̂ and p̂ show that they cannot be the usual x
and −i∂/∂x operators. If you want a concrete example of these operators, then take

x̂ =
1√

2mω
σ1, p̂ = −

√
mω

2
σ2 (99)

where the σi are the Pauli matrices. It is instructive to evaluate â, â† and Ĥ from these
and check they obey all the above relations.)

3.4 Relativity

13. In Euclidean space, we do not usually distinguish between covariant and contravariant
indices, whereas in Minkowski space this is mandatory. Why?

14. What is the inverse matrix g−1 of the metric g? Since g is used to lower a Lorentz index,
then any tensor Tµν would have both its indices lowered through

Tρσ = gρµ gσν T
µν ,

where the right-hand side can be written in matrix form as g T gT = g T g, as g is symmet-
ric. Hence, choosing Tρσ = gρσ, find the matrix corresponding to Tµν , i.e. solve g = gTg
for T . This is clearly the definition of gµν , which is used to raise an index.

15. If xµ = (t, x, y, z) is the position four-vector, the general Lorentz transformation matrix
Λµν gives

x′
µ

= Λµν x
ν .

Take Λµν from eq. (76). How do Λµν , Λµ
ν and Λµν differ from this? In particular, how is

Λµ
ν related to Λµν?

16. Show that ∂µφ does transform like xµ and not xµ (i.e. it is a covector).

17. By imposing the condition
gµνx

′µx′ν = gµνx
µxν (100)

show that
gµνΛµρΛ

ν
σ = gρσ or ΛTgΛ = g . (101)

(This is the analogue of the orthogonality relation for rotations in Sec. 4.1.) Check that
it works for the Λ given by eq. (76).

18. Show, by reconsidering equation (100) using xµxµ, or otherwise, that

x′µ = xν(Λ−1)νµ . (102)

19. Show that any four-vector orthogonal to a time-like four-vector is space-like.

16



20. State which of the following are (a) Lorentz scalars; (b) Lorentz vectors; (c) Lorentz tensors
of higher rank.

(i) ∂αx
α;

(ii) φ(xα);

(iii) xα xβ xα;

(iv) xαxβ.

21. Prove the following:

(i) ∂α(xα xβ) = (D + 1)xβ;

(ii) gµν x
µ xν = gµν xµ xν ,

where D is the dimension of spacetime.

22. Let kµ = (E,k), k′µ = (E′,k′) and xµ = (t,x) be four-vectors. Given the identity∫
d3x

(2π)3
eip·x = δ(3)(p)

show that ∫
d3x

(2π)3
ei(k−k

′)·x = ei(E−E
′)tδ(3)(k − k′).

What does this imply about plane waves with different momenta?
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4 Introduction to QED and QCD

4.1 Rotations, Angular Momentum, Groups and Generators

A general rotation of an object in 3-dimensions needs three rotation angles, which can be consid-
ered to be around the x, y and z axes. Such a 3D rotation can be represented by a 3×3 orthogonal
matrix R with determinant +1, where orthogonal means that RTR = 1l, i.e. RT = R−1. This
matrix can be applied to a vector to transform it to a rotated vector. There are an infinite num-
ber of such matrices, corresponding to all possible values of the three rotation angles needed in
3D, and together these matrices form an example of a group. This group is called the special
(meaning determinant = +1) orthogonal group, SO(3), where the 3 gives the size of the matrix.

A group is a collection of objects which have particular properties, namely: when multiplied
together, the result must also be a member of the group; the multiplication must be associative;
there must be a unit member which does nothing when it multiplies another member; and there
must be an inverse member for each member such that their product gives the unit member.

The group formed by the rotation matrices is an example of a Lie (pronounced “Lee”)
group. These have the property that a large rotation can always be built up out of multiple
small rotations. In the infinitesimal angle limit, any rotation matrix can be built out of a unit
matrix plus three (infinitesimally) small angles multiplying three other matrices

R = 1l + iδαiLi (103)

where δαi is the infinitesimal angle of rotation around axis i. The three matrices Li are called
the ‘generators’ of the group, since by multiple applications, they can generate a finite rotation.
Since R is real and orthogonal, then the Li must be Hermitian, meaning L†i = Li. As such,
they correspond to operators of observables in QM, in this case angular momentum operators
for spin-1. For a finite rotation by αi, then the general matrix can be written as

R = eiαiLi (104)

These concepts can be generalised to other matrix groups. We will be interested in unitary
matrices, for which U † = U−1, where U † denotes the Hermitian conjugate, i.e. the complex
conjugate and transpose; U † ≡ U∗T . (Note, for a real matrix, then unitary is equivalent to
orthogonal.) The collection of unitary matrices of size N × N with determinant +1 also form
a group, now called SU(N) with “U” for unitary, and these are used to transform complex
vectors with N components. As for the rotation case, an infinitesimal transformation by some
real parameters δαi can be written as

U = 1l + iδαiXi (105)

in terms of some generators Xi. To ensure U is unitary, these generators must also be Hermitian
and again for a finite transformation

U = eiαiXi (106)

Generally, for group SU(N), there are N2 − 1 parameters.
One such group is SU(2) which has 22 − 1 = 3 parameters. Its generators can be defined in

terms of the Pauli matrices σi

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (107)

such that the generators Xi = σi/2. The Xi are Hermitian and these generators are known to
correspond to spin-1/2 operators in QM. SU(2) is very closely related to SO(3).
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4.2 Scattering in Quantum Mechanics

The scattering of a particle of mass m by a potential V (x) can be described in nonrelativistic
quantum mechanics by using the Born approximation. The result for the scattering cross section
in the first-order Born approximation is given by

dσ

dΩ
=
m2

4π2
|Ṽ (q)|2 , (108)

where dσ/dΩ is the differential cross section in the solid angle element, Ṽ (q) is the Fourier
transform of the potential given by

Ṽ (q) =

∫
d3x e−iq·x V (x) , (109)

and q is the momentum transferred in the scattering.

4.3 Relativistic Kinematics

The four-velocity is defined as

uµ =
dxµ

dτ
, (110)

where dxµ = (dt, dx), and dτ is the proper time given by

dτ =
√
dxµdxµ . (111)

The four-momentum of a particle of mass m is defined as

pµ = muµ = (E , p) (112)

where E is the energy and p is the three-momentum. The kinetic energy of a particle of
momentum pµ = (E,p) and mass m is given by

T = E −m . (113)

Consider the relativistic scattering of two particles with four-momenta p1 and p2 into two par-
ticles with four-momenta p3 and p4, shown in fig. 3. By four-momentum conservation,

Figure 3: Relativistic 2→ 2 scattering.

p1 + p2 = p3 + p4 . (114)

The particles’ masses are given by

p2i = m2
i , i = 1, 2, 3, 4 . (115)

We can define three quantities (called the “Mandelstam variables”)

s = (p1+p2)
2 = (p3+p4)

2, t = (p1−p3)2 = (p4−p2)2, u = (p1−p4)2 = (p3−p2)2, (116)

where the equalities above follow trivially from eq. (114). Being dot products of four-momenta,
these are clearly Lorentz invariants.
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4.4 Electromagnetism

Classical electromagnetism is summed up in the Maxwell equations, two of which are homoge-
neous:

∇×E + ∂tB = 0 , ∇ ·B = 0 , (117)

and two of which are inhomogeneous:

∇ ·E = ρ , ∇×B − ∂tE = J , (118)

where we have introduced the short-hand notation ∂t ≡ ∂/∂t. The homogeneous equations are
automatically solved by introducing the potentials φ and A as follows:

E = −∇φ− ∂tA , B = ∇×A . (119)

The E and B fields are unchanged under a gauge transformation on the potentials of the form

φ′ = φ+ ∂tλ , A′ = A−∇λ , (120)

where λ is an arbitrary function.
In relativistic notation, we define the four-potential

Aµ = (φ , A) (121)

and the four-current
jµ = (ρ , J) (122)

such that the gauge transformation is

A′µ = Aµ + ∂µλ (123)

The E and B fields form the components of a second-rank antisymmetric tensor

Fµν = ∂µAν − ∂νAµ (124)

The inhomogeneous Maxwell equations eq. (118) can then be written in relativistically covariant
form as

∂µF
µν = jν . (125)

Note, since Fµν is antisymmetric that

∂ν∂µF
µν = 0 = ∂νj

ν . (126)

meaning that the current must be conserved.

5 QED/QCD Problems

5.1 Rotations, Angular Momentum, Groups and Generators

1. The definition of a 3D rotation is that the length of a vector is not changed. Starting with
x′ = Rx, and impose x′ ·x′ = x ·x, show that any 3D rotation matrix must be orthogonal
with determinant +1.

2. For an infinitesimal rotation, write R = 1l + iA where 1l is the identity matrix and A is a
matrix with infinitesimal entries. Show that A is antisymmetric and that A∗ = −A and
hence deduce that A must be Hermitian.
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3. Parameterise A as

A =

 0 −ia3 ia2
ia3 0 −ia1
−ia2 ia1 0

 ≡ 3∑
i=1

aiLi, (127)

where the ai are infinitesimal. Write down explicit matrices for the Li and verify that they
satisfy the angular momentum commutation relations

[Li, Lj ] = iεijkLk. (128)

Compute L2 ≡ L2
1 + L2

2 + L2
3. What is the interpretation of L2?

4. Verify that 1
2σi are Hermitian and satisfy the same commutation relations as the Li.

5. Verify the following identity for the Pauli σ matrices:

(σ · a) (σ · b) = a · b + i σ · (a× b), (129)

where σ = (σ1, σ2, σ3), a and b are any two vectors, a ·b is their inner product, and a×b
is their cross product.

5.2 Scattering in Quantum Mechanics

6. Verify that for a spherically symmetric potential, V (x) = f(r) with r = |x|, the integral
in eq. (109) takes the form∫

d3x e−iq·x V (x) =
4π

|q|

∫ ∞
0

dr r sin(|q|r) f(r) . (130)

7. Using eqs. (108) and (130), show that the cross section for the scattering by a Yukawa
potential of the form

V (x) = C
e−µ|x|

|x|
, µ > 0 , (131)

is given by
dσ

dΩ
=

4C2m2

(µ2 + q2)2
. (132)

8. By making the replacements
C → α , µ→ 0 (133)

in eqs. (131) and (132), obtain the cross section for the scattering off a Coulomb potential.
Expressing the result in terms of the incoming particle momentum p = mv and the
scattering angle θ via the kinematic relation q2 = 4p2 sin2(θ/2), show that the Coulomb
scattering cross section is (

dσ

dΩ

)
Coul.

=
α2

4 p2 v2 sin4(θ/2)
. (134)

This equals the classical Rutherford scattering cross section.
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5.3 Relativistic Kinematics

9. Show that

uµ =

(
1√

1− v2
,

v√
1− v2

)
, where v =

dx

dt
, (135)

and that
u2 = uµuµ = 1 . (136)

10. Show that in the non-relativistic limit |p| � mc, the kinetic energy

T =
p2

2m

[
1 +O

(
p2

m2

)]
. (137)

11. A particle of mass M comes to rest and decays into a particle of mass m and a massless
particle. Show that the kinetic energy of the particle of mass m is

T =
(M −m)2

2M
. (138)

12. A particle of mass M with velocity v decays into two massless particles with energies E1

and E2. Determine an expression for the angle θ between the two final particles. Show
that the minimum possible value of this angle obeys the relation

sin(θmin/2) =
√

1− v2. (139)

13. Using eqs. (114) and (115), show that

s+ t+ u =
4∑
i=1

m2
i . (140)

14. Show that the total energy in the center-of-mass frame, Ec.m.
1 + Ec.m.

2 , is a relativistic
invariant of the process, and equals

√
s.

15. Show that in general we must have

√
s ≥ m3 +m4 . (141)

16. Suppose that a particle with mass m and kinetic energy T strikes a particle of equal mass
m at rest. Show that the kinetic energy T ′ of the particle scattered elastically at an angle
θ is given by

T ′ =
T cos2 θ

1 + T sin2 θ/(2m)
. (142)

[Hint: Evaluate the invariant t in two different ways in the rest frame mentioned above,
and use energy-momentum conservation. Use also the fact that T = E −m.]

5.4 Electromagnetism

17. Show thatE andB fields are unchanged under the gauge transformation given in eq. (120).

18. Check using eq. (124) that F i0 give the E components and that F ij (for i 6= j) give the
B components.
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19. Show that the pair of inhomogeneous Maxwell equations in terms of the potentials take
the form (

∂2t −∇2
)
φ− ∂t (∂tφ+ ∇ ·A) = ρ ,(

∂2t −∇2
)
A+ ∇ (∂tφ+ ∇ ·A) = J . (143)

20. Verify that the equations of motion eq. (143) can be rewritten in relativistically covariant
form as

�Aµ − ∂µ∂νAν = jµ , (144)

where ∂µ = (∂t,−∇) and � ≡ ∂µ∂µ, and show this is equivalent to eq. (125).

21. The Lorentz gauge-fixing condition is defined as

∂νA
ν = 0 . (145)

Eq. (145) only fixes the gauge up to residual gauge transformations of the form eq. 123
with

�λ = 0 . (146)

In the Lorentz gauge the equations of motion eq. (144) take the form

�Aµ = jµ . (147)

By doing a Fourier transformation on eq. (147), show that

Ãµ =
−gµν

q2
j̃ν = − j̃

µ

q2
(148)

where the Fourier transforms are

Ãµ =

∫
d4x e−iqxAµ , j̃µ =

∫
d4x e−iqxjµ . (149)
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