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1 Introduction

Plan for course:

1. Overview of SM - QFT and symmetries

2. Some group theory and representations- symmetries and fields.

3. Lagrangians and Feynman rules

4. Some historical motivation- Fermi theory for 4-fermion interactions

5. More symmetries- global and gauged

6. Spontaneous symmetry breaking

7. Building SM Lagrangian

• Gauge and Higgs bosons

• Leptons and quarks

• CKM matrix and CP violation

8. Some features of SM- more symmetries

9. Problems with/in + beyond the SM- hints towards new physics

Refs:

• 2019 SM lectures notes

• Palash B. Pal, Kane, Thomson, Burgess

2 What is the SM?

• A particular QFT defined by its symmetries and particle content encapsulated in LSM → precise un-
derstanding of all interactions of fundamental particles (except gravity) → decay rates, scattering cross-
sections.

• Developed in the 1970s → final piece Higgs boson (2012). No conflicts with experiment.

• Based on symmetries:

– POINCARÉ INVARIANCE (Lorentz and translations)

– SU(3)× SU(2)L × U(1)Y .
(SU(3) associated with the strong force, gluons with mg = 0). SU(2)L the weak force, and W±, Z
bosons. U(1)Y associated with weak hypercharge.)

– With SPONTANEOUS SYMMETRY BREAKING SU(2)L × U(1)Y → U(1)EM

(Leading to a Higgs boson with mH 125 GeV, massless W,Z bosons and a photon with mγ = 0
associated with the unbroken U(1)EM .)

– and 3 generations of quarks and leptons.
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– plus antiparticles (same mass and spin, opposite charges).

• The symmetries restrict the possible interactions.

SM interaction vertices:
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Note that the intrinsic strength of the weak interaction > that of QED but the large masses of the W±, Z
bosons lead to suppression → weak interaction is weakest force.

Additional notes:

• 3 generations: ≥ 3 needed for CP violation and breaking symmetry between matter and antimatter.

• Known universe is composed of u,d,e,νe, gauge bosons → others are short-lived and only relevant in the
early universe.
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• SM has 19 free parameters (masses and couplings) that are fixed by experiments.

Successes of SM:

• RENORMALISABILITY

• UNITARITY

• UNIFICATION of EM and weak forces (GUTs?)

• ALL ASPECTS (e.g. W and Z boson mass relations) have impressive agreement w/ experimental data.

Natural units:

ℏ = c = 1 → energy (mc2), momentum (mc), mass (m) all appear as mass ≃ energy. 1 GeV ∼ mass of proton.

Conversion factors

• ℏ = 6.6× 10−25GeV s

• c = 3× 108m/s

e.g. 1 = ℏ c = 10−17GeVm → length appears as inverse energy [GeV]−1

The action S =
∫
d4xL needs to be dimensionless so L has mass dimensions 4. L ∼ m4.

The modern viewpoint of SM is it is likely to be an EFFECTIVE FIELD THEORY- the low energy
limit of some more fundamental physics- new physics encapsulated in irrelevant operators

L = LSM +
∑
d>4

ciO(d)

Md−4

where d refers to the dimension of the operator in the SM fields and M the scale of the new physics. LSM is
the renormalisable part of the Lagrangian density.

In the EFT approach we include all known degrees of freedom in L and all possible interactions allowed by
the symmetry. The sizes of the ci are determined by experiments.

3 Group theory and symmetries

QFT provides a set of rules which- given the L of a system, allow us to calculate the rates of physical processes,
i.e. Γ, σ.

In the SM, symmetries give structures to L- restrict allowed interactions and bound states.
GROUP THEORY is the mathematical structure to deal with symmetries.
Group: a set of elements with a binary composition rule ◦ between all elemments such that:

• ◦ closes: a ◦ b ∈ G, ∀ a, b ∈ G

• ◦ is associative:
a ◦ (b ◦ c) = (a ◦ b) ◦ c, ∀a, b, c ∈ G

• ∃ identity element I where a ◦ I= I ◦ a = a, ∀a ∈ G

• Each element has an inverse:
∀a ∈ G,∃a−1 ∈ G

such that a ◦ a−1 = a−1 ◦ a = I

Symmetries: consider a set whose elements are “symmetry operations” i.e. that leave a system (e.g.
physical object, mathematical equation, L) unchanged.

Applying one operation after the other gives a composition rule → all symmetry operastions form a group.
Some examples of groups
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• Parity: space inversion x → −x . Scalars are invariant under parity (i.e. kinetic energy). Vectors
transform as p → −p. Axial vectors L = x × p → L (i.e. invariant). Pseudo-scalars e.g. helicity (spin
projected onto the direction of momentum) h ∝ S.p → −h

• The group U(1) has elements z = e−iθ where θ is a real, continuous parameter, with a composition rule
given by ordinary multiplication, so it is abelian.

• For unitary groups U(N) the elements are N × N unitary matrices with unit determinant (U†U = I).
The composition law is matrix multiplication. |det(U†U)|2 = 1 → det(U) = eiα ̸= 0 → inverse exists
(U−1 = U†)

• SU(N): elements set of N ×N unitary matrices w/ unit determinant, composition rule matrix multiplica-
tion.

We can think of a group SU(N) in terms of some invariance. Suppose an element U acts on a column matrix
ψ with N elements

ψ′ = Uψ

where ψ′ is also a N-dimensional column matrix. Examples are:

ψ =

(
u
d

)
,

(
νe
e

)
for SU(2)L

ψ =

 r
g
b

 for SU(3)

then ψ†ψ → ψ†′ψ′ = ψ†ψ so SU(N) transformations keep the norm of a state invariant.

• Lorentz group SO(3,1)- leaves invariant the line element ds2 = −dt2+dx2+dy2+dz2. This is the “cousin”
of SO(4) which leaves dt2 + dx2 + dy2 + dz2 invariant.

• Poincaré group- Lorentz transformations and translations.

4 Properties of group

• Discrete vs continuous: a group is continuous if one element can be changed to another element without
going outside the group. e.g. U(1) with elements e−iθ (real θ) is continuous, as changing θ continuously
gives different elements of the group. e.g. Z2 with elements {+1,-1} are discrete, as you can’t go from +1
to −1 without leaving the group.

• Spacetime vs internal: a group is spacetime if its elements inflict change on spacetime coordinates e.g.
parity x → −x, or Poincaré group. A group is internal if its elements transform quantities defined at the
same point in spacetime. e.g. changing phase of the wave-function or changing one kind of particle to
another.

4



• Local vs global: transformations are characterised by a parameter e.g. θ for U(1) with g = eiθ. If the
parameter is independent if the spacetime coordinate then the symmetry is global. If the parameter
depends on the spacetime coordinates the symmetry is local. We also call local symmetries “gauge
symmetries”.
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5 Generators, algebra, representations

For infinite groups (with infinite numbers of elements) we characterise the group by a finite number of parameters
(e.g. θ for U(1))

We can then write a group element g as:

g = exp−iTαθα

where Tα are the generators of the group and θα are the parameters. The generators can be defined through
the equation:

Ta = i
∂g

∂θa
|θa=0

Note that for each parameter we have 1 generator.
e.g. SU(N): an SU(N) matrix has N2 − 1 independent elements so we need N2 − 1 independent parameters

and generators. The generators are traceless, Hermitian operators. SU(2) has 3 generators whilst SU(3) has 8.
Algebra: now ga = exp−iTaθa and we need ga ◦ gb = gc, gc ∈ g
Use Baker-Campbell-Hausdorff formula eAeB = expA+B + 1

2 [A,B] + ... then

exp−iTaθa exp−iTbθb = exp−iTcθc

[Ta, Tb] = ifabcTc

where fabc are the structure constants. The equation above is called the “algebra” of the group.
Representations A way of visualising group elements by considering what they do as operations on a

particular choice of states.
Assign each group element an operator Rg such that:

Rg1Rg2 = Rg1g2

We saw above how SU(N) matrices form a matrix representation of the group SU(N) and how the matrix
operators act on the states ψ, N dimensional column vectors

ψ → ψ′ = Uψ

(leaving ψ†ψ invariant)
The operations themselves form the representation of the group- we often also say that the states themselves

form a representation.
Examples

• For any group G we can define the trivial or “singlet” representation

Rg = I∀ elements g ∈ G

• For N-dimensional column vectors, form the “defining” or “fundemental” representation of SU(N). For
SU(2) the generators in the fundamental representation are the Pauli matrices 1

2σa

• The structure constants also define a representation (tadja )bc = −ifabc called the “adjoint” representation
[ta, tb] = fabctc

• Conjugate representation: if Rg1Rg2 = Rg1g2 then R∗
g1R

∗
g2 = R∗

g1g2 so {R̄g}={Rast
g } also form a repre-

sentation.

e.g. denote fundamental representation of SU(3) as 3 and the conjugate representation as 3̄ or 3∗

6 Fields

Aim: construct an action functional involving fields, from which all dynamics can be obtained. Action should
enjoy spacetime Poincaré invariance and internal SU(3) × SU(2)L × U(1)Y invariance. Need fields to have
definite transformation properties. We start with representations of the Lorentz group and corresponding
quantum fields/operators.

• Scalar fields (“spin-0”): scalar wavefunction should solve the Klein Gordon equation:

(□2 +m2)ϕ(x) = 0

ϕ(x) =

∫
d3p√

(2π)22Ep

(â(p)e−p.x + â†(p)eip.x)

where â(p) annihilates a particle with 3-momentum p and â†(p) creates a particle with 3-momentum p.
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• Vector fields (“spin-1”): one example is the photon field Aµ(x), a 4-vector, defined through Fµν = ∂µAν −
∂νAµ. The source-free Maxwell’s equations: ∂µF

µν are satisfied by:

Aµ(x) =

3∑
r=0

∫
d3p√

(2π)22Ep

(âr(p)ϵ
µ
r e

−p.x + â†rϵ
µ ∗
r (p)eip.x)

where ϵµr is the polarisation vector. As the photon only carries 2 degrees of freedom, there are only two
independent polarisation vectors.

• A massive vector field: satisfies equation ∂µF
µν +M2Aµ = 0 and has 3 independent polarisation states.

• Dirac field (“spin-1/2”): spin- 12 fermion wavefunction satisfies the Dirac Equation: iγµ∂µψ − mψ = 0
where γµ, γnu = 2ηµν e.g.:

γ0 =

(
0 I2
I2 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−I2 0
0 I2

)

ψ(x) =
∑
s=1,2

∫
d3p√

(2π)22Ep

(d̂s(p)us(p)e
−ip.x + d̂†

s(p)vs(p)e
ip.x)

where d̂s annihilates a particle of momentum p and d̂†s creates a particle of momentum p. us(p) and vs(p)
are 4-component column vectors. Note that Dirac spinors can be decomposed into Weyl spinors via the
projections:

L =
1

2
(1− γ5), R =

1

2
(1 + γ5) → ψ = (L+R)ψ = Lψ +Rψ = ψL + ψR

Chirality is a LI property conserved for massless partiles → can write L in terms of ψL, ψR

Lagrangian: aim is to construct an action functional involving the fields:

L =

∫
d4xL(ΦA, ∂µΦ

A)

where ΦA are some general fields.
Classically: action principle → classical solutions are extrema of action and solve:

∂µ

(
∂L

∂(partialµΦA)

)
− ∂L
∂ΦA

Properties of Lagrangian:

• L should be Hermitian (+h.c. if needed).

• The dimensions of L should be 4 in natural units.

• Terms of order > 2 in fields are interaction terms.

• L is Poincaré invariant (translation → no explicit dependence on xµ. Lorentz invariant → only Lorentz
invariant combinations of fields included.

e.g. ϕn, ∂µϕ∂
µϕ, VµV

µ, (∂µVν)(∂
µV ν), (∂µVν)(∂

νV µ) Fermion fields must occur in even numbers (as they
cary angulasr momentum 1

2 and total angular momentum must be 0.
Define ψ̄ = ψ†γ0 and use bilinears to construct Lorentz invariants e.g. ψ̄ψ (scalar), ψ̄γ5ψ (pseudoscalar),

ψ̄γµψ (vector), ψ̄γµγ5ψ (axial-vector), ψ̄γµνψ where γµν = 1
2 [γµ, γν ] (tensor)

L will also have internal symmetries (anomaly free)- every internal symmetry of the action (through Noether’s
theorem) gives rise to conservation laws.

For an intfinitesimal transformation:

ΨA(x) → Ψ′A(x) = ΨA + δΨA

e.g. for U(1) ψ → ψ′ = e−iθψ ≈ 1− iθϕ for θ << 1.
Then

∂µJ
µ
r = 0

where

Jµ
r =

∂L
∂(∂µϕ)

δϕ

δθr
and

∂Qr

∂ t
= 0 whereQr =

∫
J0
r d

3x

i.e. a “conserved current” and a “conserved charge”.
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7 Fermi theory of weak interactions

Although the weak interactions are very weak compared to the strong and EM interactions, they give rise to
many important physical phenomena e.g. flavour changing and parity violation.

Consider the β−decay of 60Co:

Now consider:
n→ p+ e− + ν̄e

Fermi supposed 4 fermions interact at a point, via a current-current interaction

Lint = −GF

[
ψ̄(p)γµψ(n)

] [
ψ̄(e)γµψ(νe)

]
where the two terms are vector bi-linears being contracted to give a scalar. Going left to write, the ψ̄(p) creates
a proton, the ψ(n) annihilates a neutron, the ψ̄(e) creates an electron and the ψ(νe) corresponds to annihilating
a νe or creating a ν̄e.

Many other phenomena can be described by such 4-fermion current-current interactions e.g. n+νe → p+e−,
µ− → e− + νµ + ν̄e, e

− + νe → e− + νe
In fact, these processes can involve parity violation. Parity violation cannot arise from [VV] type interactions,

nor from [AA] interactions, need a [VA] or [AV] type interaction.

Lint =
GF√
2

[
ψ̄1γ

µ(cV ± cAγ5)ψ2

] [
ψ̄3γµ(1± γ5)ψ4

]
cV and cA are constants fixed experimentally- 4-fermi interactions turn out to involve V-A currents.

Note: we can use Fierz identifies to express Lint with different couplings.
Problems of Fermi Theory
Fermi theory is very successful at describing low-energy weak interactions but

• Recall that Lkin = ψ̄γµ∂µpsi and since [∂µ] = 1, and [Lkin] = 4 then [ψ] = 3
2 . This means that Fermi

constant GF has mass dimension -2 and the theory is non-renormalisable.

• Even sticking to tree-level diagrams, cross-sections σ ∝ G2
F s where s is the COM available for the process

→ cross-section grows linearly with s which gives a breakdown of unitarity at energies ≳ G
− 1

2

F

• Better to see Fermi theory as a low energy approximation to some more complete theory which should be
renormalisable and unitary.

8 Intermediate gauge bosons

Like in QED where interaction proceeds via a photon:

e− − e− or e− − e+ elastic scattering also involves 4-fermions via a basic interaction vertex
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Rather than current-current interaction, consider current-vector boson - current interaction that can be
described by the 4-fermion vertex at low energies:

Write the vector boson interaction with the fermions as

Lint = −gJµW †
µ + h.c

where g is the coupling constant, Jµ is a superposition of Fermion bilinears and W+
µ describes the (positively

charged) vector boson. The amplitude for the annihilation diagram above is:

iM = (−ig)2Jµ†
i DµνJ

ν

where Dµν is the propagator for the intermediate vector boson. For a massive vector field:

Dµν(q) =
1

q2 −M2
W

(
−gµν +

qµqν
M2

W

)
In the limit of low energies qµ << MW

Dµν → gµν
M2

W

→ iL ∼ g2

M2
W

Jµ†Jµ

exactly as in Fermi ineraction but with GF ∼ g2

M2
W
. So Fermi theory emerges as an approximation to current-

vector boson-current interaction for momentum transfers small compared to the vector boson mass.
But rules for renormalisibility:

1. No coupling constant with negative mass dimension.

2. Dboson
1
q2 and Dfermion

1
q for large q.

The first criteria is satisfied, but our propagator for massive vector bosons:

Dµν(q) =
1

q2 −M2
W

(
−gµν +

qµqν
M2

W

)
→ 1

q2
qµqν
M2

W

as q >> MW so it does not fall off as required → UV divergences.
We need to revisit the theory for massive vector bosons (need mass for Fermi theory to arise as an EFT) -

this leads us to gauge symmetries (and their breakings).

9 More symmetries! Global and gauged; abelian and non-abelian

Global abelian U(1):
Consider e.g. a complex scalar field transforming under a global U(1) symmetry:

ϕ(x) → ϕ′(x) = eiθϕ(x)

with an invariant Lagrangian desnity (up to dim 4):

L[ϕ, ∂µϕ] = ∂µϕ
∗∂µϕ−m2ϕ∗ϕ− λ

2
(ϕ∗ϕ)2

Symmetry → masses of ϕ1,2 where ϕ = 1√
2
(ϕ1 + iϕ2) are equal (L ∈ −m2ϕ∗ϕ = −m2((ϕ1)

2 + (ϕ2)
2)) i.e.

m1 = m2 = m
Symmetry → conserved current

jµ =
∂L

∂(∂µϕ)

δϕ

δθ
→ jµ = −iϕ∗∂µϕ+ iϕ∂µϕ

∗

with conserved charge Q =
∫
d3xj0.

Gauged (local) U(1):
Consier a local symmetry transformation ϕ(x) → ϕ′(x) = eiθ(x)ϕ(x).
Lkin is no longer invariant

∂µϕ
∗∂µϕ→ ∂µ(e

−iθ(x)ϕ∗(x))∂µ(eiθ(x)ϕ(x))
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Promote ∂µ = ∂
∂ xµ to a covariant derivative

Dµϕ = (∂µ − ieAµ)ϕ

that transforms covariantly Dµϕ→ eiθ(x)Dµϕ. In the expression e is the coupling constant and Aµ the “gauge
field” (corresponding to the vector boson.

Now,

Dµϕ→ (Dµϕ)
′ = (∂µ−ieA′

µ)ϕ
′ = (∂µ−ieA′

µ)(e
iθ(x)ϕ(x)) = eiθ(x)(∂µϕ+iϕ∂µθ−ieA′

µϕ) = eiθ(x)(∂µϕ−ieAµϕ) = eiθ(x)Dµϕ

provided that the gauge field transforms as

Aµ → A′
µ = Aµ +

1

e
∂µθ(x)

The kinetic term in the Lagrangian now transforms as

Lkin = DµϕD
µϕ∗ → eiθ(x)Dµϕe

−iθ(x)Dµϕ∗ = DµϕD
µϕ∗

Having now a massless vector boson, introduce its field strength tensor

Fµν = ∂µAν − ∂νAµ =
i

e
[Dµ, Dν ]

where the final term corresponds to the covariant form.
This can be combined into a invariant Lagrangian (scalar electrodynamics)

L = −1

4
FµνF

µν + (Dµϕ)
∗(Dµϕ)−m2(ϕ∗ϕ)− V (ϕ∗ϕ)

Note that we still have m1 = m2 = m for the scalar degrees of freedom and interaction as functions of ϕ∗ϕ, two
polarisations for the massless vector field and conserved charge.

Global non-Abelian:
Consider now e.g. N scalar fields (e.g. N=3 for “scalar” QCD, and N=2 for the EW case).

Φ =


Φ1

...

...

...
ΦN


with transformation ϕi(x) → ϕ′i(x) = Uijϕj(x) where U ∈ SU(N) (i.e. N × N matrices with UU† = I and
det(U) = 1 with components Uij).

SU(N) is parameterise by r = N2 − 1 parameters θa as U = exp (i
∑r

a=1 θ
ata) e.g. ta = σa/2 for SU(2).

The unitary transformation Φ → Φ′ = UΦ leaves Φ†Φ → (UΦ)†(UΦ) = Φ†U†UΦ = Φ†Φ invariant (as
U†U = I).

The Lagrangian can be written:

L = ∂µΦ
†∂µΦ−m2Φ†Φ− λ(Φ†Φ)2 = ∂µϕ

∗
i ∂

µϕi = m2ϕ∗iϕi − λ(ϕ∗iϕi)
2(∗)

This is invariant under a global SU(N) transformation. By Symmetry, all fields ϕi have the same mass and
coupling constant and set of conserved charges.

Gauged (local) non-Abelian
L in (∗) is no longer invariant if the SU(N) transformation is coordinate dependent i.e. ϕi(x) → ϕ′i(x) =
Uij(x)ϕi(x) where U(x) ∈ SU(N). This is because ∂µΦ

′(x) = ∂µ(U(x)Φ(x)) = U(x)∂µΦ(x) + ∂µU(x).Φ(x)
renders the kinetic term not invariant.

As for the Abelian case, introduce gauge fields and promote the partial derivatives to covariant derivatives

Dµϕi = ∂µϕi − igAa
µT

a
ijϕj

where a = 1, ..., N2 − 1 and i, j = 1, ...., N . The Aµij are new vector fields c.f. photon and the T a
ij are the

generators of SU(N) in the representation of ϕj .
The Aµij transforms such that (Dµϕi)

′ = UijDmuϕj (DµΦ)
′ = U(DµΦ).

DµΦ
′ = ∂µΦ

′ − igA′
µΦ

′ = U∂µΦ+ ∂µU.Φ− igA′
µUΦ

→ Aµ → A′
µ = UAµU

−1 − i

g
(∂µU)U−1
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writing Aµij = Aa
µT

a
ij and U = exp−igTaθa, ∂µU = (−igTb∂µθb)U we can show that (expand in small θa

Aa′
µ = Aa

µ + gfbcaθ
bAc

µ + ∂µθ
a + .... = Aa

µ − gθb(tadj.b )acA
c
µ

i.e. Aa
µ transforms in the adjoint of the symmetry group. Now

L = (D)µΦ)
†DµΦ−m2Φ†Φ− λ(Φ†Φ)2 − 1

2
Tr(FµνF

µν)

where Fµν =
∑
F a
µνt

a and F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfbcaA

b
µA

c
ν

Fµν(x) → F ′
µν(x) = U(x)FµνU

−1(x) so we have a theory withN2−1 massless vector bosons that self-interact
→ dynamics distinct from QED.

10 Spontaneous symmetry breaking

Aim: a theory of massive vector bosons.
Consider L invariant under some internal symmetry, with a vacuum state which is not invariant under the

symmetry transformation → “spontaneous symmetry breaking”.
Global symmetry:

e.g. Our U(1) symmetric theory of potential

V (ϕ, ϕ∗) = −µ
2

2
ϕϕ∗ +

λ

4
(ϕϕ∗)2

as sketched below (note ϕ = 1√
2
(ϕ1 + iϕ2))

The minimum of the potential lies at any point along the curve ϕϕ∗ = 1
2 (ϕ

2
1 + ϕ22) =

1
2V

2 = µ2

λ .
The U(1) symmetry ϕ→ ϕeiθ takes a point on the circle and moves it to another point in the circle → the

vacuum is not invariant.
Take e.g. the Vacuum ϕ1 = V, ϕ2 = 0 and expand the fields on top of this vacuum:

ϕ1(x) = v + χx, ϕ2(x) = b(x)

where χ(x), b(x) are quantum fields expanded in creation/annihilation operators, acting on the vacuum (from
right/left respectively).

The expansion of V (ϕ1, ϕ2) gives:

V = −µ
2

2

1

2
[(v + χ)2 + b2] +

λ

4
[
1

2
((v + χ)2 + b2)]2

up to quadratic order (and dropping constant terms)

L2
χ,θ =

1

2
(∂µχ)

2 +
1

2
(∂µb)

2 − 1

2
µ2χ2

→ one massive field χ, and one massless field b and higher order terms (interactions between χ and b). The
massless field is called a “Goldstone boson”→ generic consequence of spontaneously breaking a global symmetry,
one massless boson appears in the spectrum of perturbations.

e.g. pions are approximate Goldstone bosons of the global SU(2) symmetry in QCD of massless quarks,
broken by non-perturbative quark condensate. Because quarks are not exactly massless in fundamental theory,
the SU(2) symmetry is only approximate, and pions are not exactly massless, but much lighter than the other
states in the theory.
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11 Gauge symmetry breaking- the Higgs mechanism

Consider the Abelian Higgs model:

L = −1

4
FµνF

µν + (Dµϕ)
∗(Dµϕ)− [−µ2ϕ∗ϕ+ λ(ϕ∗ϕ)2]

where under the gauge transformation ϕ(x) → ϕ∗(x) = eiθ(x)ϕ(x) and the covariant derivative is Dµϕ =
(∂µ − ieAµ)ϕ where the gauge field transforms as:

Aµ(x) → A′
µ(x) = Aµ(x) +

1

e
∂µθ(x)

Choose a vacuum (values of field with minimum energy):

A(v)
µ = 0, ϕ(v) =

1√
2
v → SSB

Expand into small perturbations on top of the vacuum

ϕ(x) =
1√
2
(v + χ(x) + ib(x))

so that Dµϕ = (∂µϕ− ieAµϕ) =
1√
2
(∂µχ+ i∂µb− ievAµ) to leading orders.

Plugging into L and expanding to 2nd order:

L2 = −1

4
FµνF

µν +
1

2
(∂µχ)(∂

µχ)− µ2χ2 +
e2v2

2
(Aµ − 1

ev
∂µb)

2

Note b and Aµ only enter in the combination Bµ = Aµ − 1
ev∂µb. Define Bµν = ∂µBν − ∂νBµ and rewrite again

L(2) = −1

2
BµνB

µν +
e2v2

2
BµB

µ +
1

2
(∂µχ)(∂

µχ)− µ2χ2

So we have a theory for a massive vector field and a massive scalar field where:

mv = ev =
eµ√
λ
, mχ =

√
2µ =

√
2λv

Note that b disappears Aµ has “eaten” the Goldstone boson tobecome massive- recall that a massless vector
field has 2 dofs whereas a massive one has 3 dofs.

12 Standard EW theory

Two key features- SSB and chirality.
Recall that Dirac spinors can be decomposed into chiral spinors

ψL = Lψ =
1

2
(1− γ5)ψ, ψR = Rψ =

1

2
(1 + γ5)ψ, ψ = ψL + ψR

Chirality is preserved under Lorentz transforations.
Conjugate of a LH spinor is ψ̄L = ψ̄R.
Mass term can be written as ψ̄ψ = ψ̄RψL+ ψ̄LψR → need both chirality to write down mass terms e.g. need

eL, eR but we only have νL.
No reason for internal symmetries to act in the same way on L and R chiral sectors → L and R fermions

can have different interactions.

Note that ψR is the parity transformation of ψL, ψL(x)
P
→ ± γ0ψR(x̃), so any symmetry under which ψL

and ψR transform differently will violate parity (i.e. weak interaction).
Gauge and Higgs bosons

Consider gauge symmetries SU(2)L ×U(1)Y where SU(2)L is the weak gauge symmetry and Y corresponds to
the hypercharge. SU(2)L acts non trivially only on L chiral fermions.

Gauge fielda W a=1,2,3
µ and Bµ and field strengths F a

µν(= ∂µW
a
ν − ∂νW

a
µ − fabcW

b
µW

c
ν ) and Bµν

Add one complex scalar field SU(2)L doublet

(
ϕ1
ϕ2

)
, i.e. the “Higgs” field, with hypercharge Yϕ = 1 to

mediate SSB.
Gauge invariant Lagrangian is

L = −1

4
F a
µνF

µν a − 1

4
BµνB

µν + (Dµϕ)
†(Dµϕ)− λ

(
ϕ†ϕ− v2

2

)2
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where the final term is the scalar potential, and the covariant derivative is

Dµϕ = (∂µ − ig
σa
2
W a

µ − i
g′

2
YϕBµ)ϕ

where Yϕ =

(
1 0
0 1

)
, and g and g′ are the coupling constants corresponding to the gauge interactions.

The minimum of the potential is at

|⟨ϕ1⟩|2 + |⟨ϕ2⟩|2 =
1

2
v2

Under SU(2)L U⟨ϕ⟩ ≠ ⟨ϕ⟩ in general (U = eiθ
aTa

= I + iθaT a + ...).

If we choose min ⟨ϕ⟩ =
(

0
v√
2

)
then we get SSB EW symmetry breaking.

Note that Q = σ3

2 +
Yϕ

2 = 1
2

(
1 0
0 −1

)
+ 1

2

(
1 0
0 1

)
=

(
1 0
0 0

)
does not change the vacuum state

U⟨ϕ⟩ = (1 + Q)⟨ϕ⟩ = ⟨ϕ⟩ ,

(
Q⟨ϕ⟩ =

(
1 0
0 0

)(
0
v√
2

)
=

(
0
0

))
so SSB leaves a remnant U(1) symmetry

unbroken.

SU(2)L × U(1)Y → U(1)EM

Now expand about the vacuum ⟨W a
µ ⟩ = 0, ⟨Bµ⟩ = 0, ⟨ϕ⟩ =

(
0
v√
2

)
.

ϕ =

(
0

v√
2
+ H(x)√

2

)

(note: we have gone to the “unitary gauge” where the Goldstone bosons disappear from the spectrum).

Dµϕ = ∂µϕ+

[
− ig

2
W 1

µ

(
0 1
1 0

)
− ig

2
W 2

µ

(
0 −i
i 0

)
− ig

2
W 3

µ

(
1 0
0 −1

)
− ig′

2
Bµ

(
1 0
0 1

)](
0

v√
2
+ H(x)√

2

)

=

(
− ig

2
√
2
(W 1

µ − iW 2
µ)(v +H(x))

− ig

2
√
2
(g′Bµ − gW 3

µ)(v +H(x)) + 1√
2
∂µH(x)

)
Introduce W±

µ = 1√
2
(W 1

µ ∓ iW 3
µ) so that (W−

µ )∗ =W ∗
µ , Zµ = 1√

g2+g′2
(gW 3

µ − g′Bµ) and Aµ = 1√
g2+g′2

(gBµ +

g′W 3
µ . Then we can write

Dµϕ =

(
− igv

2 W
+
µ

1√
2
∂µH(x) +

i
√

g2+g′2

2
√
2

vZµ

)
+

(
− ig

2 W
+
µ H

i
√

g2+g′2

2
√
2

ZµH(x)

)

where the first term is linear in excitations whilst the second term is the second order terms. To second order
in the excitations:

L ⊂ [(Dµϕ)
†(Dµϕ)]

(2) =
1

2
(∂µH)2 +

g2v2

4
W+

µ W
µ− +

1

2

(g2 + g′2)

4
v2ZµZ

µ

where (Dµϕ)
† is (1× 2) and Dµϕ is (2× 1). So we have massive vector bosons W±

µ and Zµ with masses

mW =
gv

2
, mZ =

√
g2 + g′2

2
v

One can derive by expanding the scalar potential V (ϕ) to second order in H(x) that

mH =
√
2λv

...and don’t forget the massless photon Aµ!
Introduce the Weinberg mixing angle

cos θw =
g√

g2 + g′2
, sin θw =

g′√
g2 + g′2

then we get mZ = mW

cos θw
.
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Experimentally sin2 θw ≈ 0.23- measured independently (via γ,W,Z, with quarks and leptons) → precision
test of SM.

Quarks and leptons under EW symmetry:
Leptons e−L and νeL form a doublet under SU(2)L

ψL =

(
νeL
eL

)
and also

(
νµL
µL

)
,

(
ντL
τL

)
, ψL → ψ′

L = UψL

and transform under hypercharge with charge YL = 1. (ψL → eiYLθ(x)ψL)
eR is SU(2)L singlet and has hypercharge YR = 2. As for neutrinos that are massless- no need for νR.

QEM =
σ3

2
+
Y

2
I =

(
0 0
0 −1

)
→ QEMeL = −1, QEMνL = 0

Note ēLeR would not be gauge invariant but

Lyukawa,e− = −heψ̄i=1,2
L ϕieR − heēRψ

†iψi
L

where he is the coupling constant is allowed under gauge invariance and gives an effective mass term after SSB:

⟨ϕ⟩ =
(

0
v√
2

)
→ me =

hev√
2

Quarks LH quarks form doublets under SU(2)L and have YqL = 1
3(

uL
d′L

)
,

(
cL
s′L

)
,

(
tL
b′L

)
(Note we need CKM matrix to go to the mass eigenstate basis).

RH quarks are SU(2)L singlets with YuR
= 4

3 and YdR
= − 2

3
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