CT18 studies (related to flavoured jets at the LHC)
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Family of CT18 PDFs

CT18: nominal set (NNLO and NLO; work ongoing on N3LO); enhanced
precision (denser) grids available

CT18A: same as above except ATLAS 7 TeV W and Z data included
CT18As, CT18As_lat: s and sbar not equal, lattice information included

CT18X: same as CT18, but special scale mimicking low-x resummation used
for DIS

CT18Z: special scale and ATLAS W/Z data both included
CT18ged: NNLO QCD and NLO QED evolution

CT18lux

CT18 neutron photon PDFs

CT18LO: same data set, LO formalism (not recommended)

CT18FC: fitted charm series; 4 model series (BHPS (CT18 and CT18X),
MBMC, MCME, each with 3 sets with Ay2=0, 10, 30

CT18 _NF4: four flavor scheme

CT18MC: NLO PDFs intended for MC use (within next few weeks)
See talks at DIS24 by Aurore Courtoy, Marco Guzzi, Pavel Nadolsky
See also https://cteq-tea.gitlab.io



Prelude: uncertainties

PDF uncertainties depend first on the experimental uncertainties of
the data

Data from two measurements, or even from within the same
measurement, can both be very precise, but the result of adding
both to the PDF fit can be an increase in the PDF uncertainty (or
more likely) a smaller decrease in uncertainty than expected) if the
data are in tension with each other

The resultant PDF uncertainty relies on the definition of a
tolerance, i.e. what is a significant increase from the global

minimum 2, i.e. PDF uncertainty can be adjusted by changing the
tolerance

Ay?=1 is not applicable for ~4000 data points from different
experiments

NB: CT (Tier 2) and MSHT (dynamic tolerance) have introduced
criteria to restrict the pull of data sets that disagree with global fit

More details in extra slides



PDF uncertainties

CT and MSHT both use a Hessian
technique to determine the central PDF.

By definition, this is at the best y2. This
is not necessarily true for NNPDF.

The uncertainty is determined by allowing
an excursion from that central value. CT18
uses Ay?=37 for a 68% CL error.

The plot on the right shows a Lagrange

Multiplier scan for the gluon distribution at _GEis iNNLQ |
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Towards a new generation of CT202X PDFs

® New LHC Run 2 data added: (di)jet, vector boson, ttbar

based on experiment selections recommended in
2305.10733, 2307.11153

® \Work on implementation of N3LO contributions

® A number of other areas of development
next-generation PDF uncertainty quantification
Bezier curves
META combination
ML stress-testing

multi-Gaussian approaches

subtracted heavy-quark PDFs in S-ACOT-MPS
scheme...



Xz/Npt

25

0.5

Post CT18 data

A 3-data-type fit (CT18+nDYTTIncJet) PRELIMINARY
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The most precise new experiments tend to have an elevated y? /Np¢, in the same pattern as observed for CT18

x?/Ny: increases for experiments 124 and 125 (NuTeV), 126 and 127 (CCFR) and 203 (E866 DY), 266 and
267 (CMS 7TeV Ach), 268 (ATLAS 7TeV W, Ach).

x?*/Ny, decreases for experiments 249 (CMS 8 TeV Ach), 250 (LHCb 8 TeV W/Z )
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Impact of new data

Pulls on the gluon PDF by the new data type
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simultaneously, we get a softer gluon.
Note that new DY and tt data favor a

softer gluon, new inc. jet data prefer a
harder gluon.

Mild changes in the gluon uncertainty

P. Nadolsky, DIS 2024

1.20
| g(z,Q = 100.0GeV) 90%C
1.15 - = CT18
CT184+nDYTTIncJet
w 1.10 . .
o DY+tt+inc.jets
O 1.05
8
.2 1.00
z
g, 0-95
2
& 0.90
0.85
0.80
107510 104 10~ 0.2
xr

1.20

g
<)
&

Error Bands
-
=)
S

0.80

1071072 1072

g(z,Q = 100.0GeV) 90%C
mmm CT18
CT18+nDYTTIncJet

DY+tt+inc.jets

10-' 0.2

T

0.4

0.4

0.7



Inclusive jet vs. dijet data sets: impact on the gluon for various QCD scales
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dijet data tend to have larger uncertainties, leading to smaller y2 than inclusive jets,
but similar constraints on PDFs



Impact of new jet data on gluon
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PDF Ratio to CTISNNLO

Taming PDF uncertainties in CT202X PDFs

Several efforts to refine PDF uncertainty quantification:

understand conceptual underpinnings of the multivariate inverse problem. Much can be learned
from non-HEP statistics applications

suppress aleatory and perturbative uncertainties (e.g., from higher-order contributions)
comprehensively estimate epistemic uncertainties (e.g., due to the PDF parametrization forms)

3.0) prep—e—

s(x.Q) at Q =1.3 GeV 68%C.L. |
CTISNNLO
CT18par

2024-04-09

CT approach: “Bayesian exploration with Gaussian emulation”

preliminary PDFs for alternative parametrizations

final uncertainty with one parametrization

Preliminary fits explore experimental, theoretical,
parametrization, methodological uncertainties

The final Hessian error set (50-60) approximates the total
uncertainty due to the above factors.
P. Nadolsky, DIS 2024 14



GMVN schemes in a nutshell

Heavy-flavor production dynamics is nontrivial due to the interplay of massless and massive schemes which
are different ways of organizing the perturbation series

Massive Schemes: final-state HQ with p; < m, = pr-spectrum can be obtained in the fixed-flavor number (FFN) scheme.
- No heavy-quark PDF in the proton. Heavy flavors generated as massive final states. m, is an infrared cut-off.

- Power terms (p%/mé)p are correctly accounted for in the perturbative series.

Massless schemes: pr > mg » mp = appearance of log terms o log™ (p7/m3) that spoil the convergence of
the fixed-order expansion. Essentially, a zero mass (ZM) scheme.

- Heavy quark is considered essentially massless and enters also the running of aj.

- Need to resum these logs with DGLAP: initial-state logs resummed into a heavy-quark PDF, final-state logs
resumed into a fragmentation function (FF)

Interpolating (GMVFN) schemes: composite schemes that retain key mass dependence and efficiently
resum collinear logs, so that they combine the FFN and ZM schemes together. They are crucial for:

* acorrect treatment of heavy flavors in DIS and PP,

* accurate predictions of key scattering rates at the LHC,
* global analyses to determine proton PDFs.

M. Guzzi DIS24



Work in progress

QCD cross sections @N3LO

* DIS: The CTEQ-TEA code implements complete

0.3 flavor decompositions of DIS SFs at N3LO using
0.25F y—0.01 approximate zero-mass Wilson coefficients with a
- g rescaling variable (the Intermediate-Mass VFN
) 0'2;_ e scheme, cf. the figure)
5_‘,: 0.15F Vs FFNS Nf=3.N2LO Boting Wang’s and Keping Xie's Theses, SMU
L 0.1 - ===, oL O * Imminent implementation of massive N3LO heavy-
- IM,N3LO : : .
0.05 —  IMN3LO, . =1.36Q,1=0.2 _quark coefficients to obtain N3LO DIS cross sections
- — — ZM.N3LO, A—o 2 in the SACOT-MPS General-Mass VFN scheme

00 510 15 20 25 30 see talk of Marco Guzzi at DIS

Factorization Mass dependence  Mass dependence of the  Introduce heavy-quark

Q/ G eV schemes in the FC terms  FE and subtraction terms PDFs at large @
FFN Exact N/A no
ZM None None yes
M Approximate Approximate yes
GM Exact Approximate yes

 DGLAP evolution is performed at N3LO with APFEL/APFEL++.

* Drell-Yan: Ongoing work to include N3LO DY effects using NNLO ApplFast +
N3LO/N2LO K-factor tables

2024-04-09 P. Nadolsky, DIS 2024 B



Main idea behind S-ACOT-MPS (massive phase space)

c=FC +FE — SB.

\ J
|
““Residual FE”

FC = Flavor creation contributions with full mass dependence (available from Bublic codes)
FE = Flavor excitation contribution with approximate mass dependence P

Mass fully retained in the PS in all terms.
Kinematical power corrections under control.

allows us to get (FE-Subtraction ) in one
step

Subtraction well defined at the quark mass threshold

4

. 2
FE and Subtraction = facilitated by introducing residual PDF: 6fo(x,u?) = fo(z,p?) — g—; log (75—2> fo(z, u?) ® Py 4(z)
Q

Subtracted and Residual PDFs are provided in the form of LHAPDF LO
grids for phenomenology applications: https://sacotmps.hepforge.org/downloads?f=PDFs at

More details in K. Xie PhD Thesis: “Massive elementary particles in the standard model and its supersymmetric triplet higgs extension.”
https://scholar.smu.edu/hum_sci_physics_etds/7, 2019.

M. Guzzi DIS24



Charm and b quark distributions

Perturbative view is that c and b quarks are not present in the
proton at scales lower then their masses

They can be produced in the initial state at scales higher then their
masses through gluon splitting into quark-antiquark pairs (thus
primarily at lower x)

only things that drive production (besides the gluon distribution)
are the heavy quark mass and the value of og(m;)

But the proton can also have an intrinsic charm (and bottom for
that matter) component arising from scattering contributions
beyond leading twist

 there are models (BHPS, incorporated by the CTEQ group),
and increasingly, predictions from lattice gauge theory, some of
which have been incorporated into CT fits

CT has published PDF sets in which an intrinsic component of
charm is modeled. The addition of this intrinsic component leads to
a small, but noticeable, reduction in global 2
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The L, sensitivity

For data to influence the PDF fit in a particular region of x and Q?2, two
conditions must be met

the parton-level dynamics must depend on a particular PDF (say that of
the gluon), as manifested in a statistical correlation

the data must have sufficient resolving power to contribute to the PDF
likelihood analysis

The L, sensitivity incorporates both of these features

The L, sensitivity is a way of viewing the pulls of all of the experiments used
in a global PDF fit, for a particular parton flavor, as a function of a kinematic
variable, such as parton x

or, when plotted for a PDF luminosity, as a function of the mass

The fit value for a particular PDF(x,Q) is determined by the sum of these
pulls



L, sensitivity

3, =
S}{,LZ(E) = VXAEH fo 2nd | agrangian technique
= (A"E) CY(f,x%)
® CH represents the cosine of the correlation angle
between PDF flavor f (or any defined quantity) and
experimental y?

The importance of an experiment for a particular PDF depends not only on the
correlation of the cross section with that PDF, but the degree to which the cross
section can determine that PDF.

® Can also be defined for the MC PDF approach



sz(l.z sensitivity)

A positive value of the L2 sensitivity indicates the data wants to pull the PDF down,
while a negative value indicates an upwards pull.

An ATLAS, CTEQ-TEA, and MSHT X.Jing et al.,arXiv:2306.03918
comparative study of NNLO and aN3LO PDF sensitivities

MSHT20 NNLO reduced ATLAS21 NNLO
CT18' NNLO reduced g(x, 2 Gev) g(x, 2 GeV)
g(x. 2 Gev) 10p—r

= 08: ATLAS 7 TeV WIZ
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'\ - 8Q: ATLAS 8TeVZ 3D

Y
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— : ) — 180: Combined HERA DIS
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| M :
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—73:CMS 8 TeV jets
—— 248: ATLAS 7 TeV WIZ [2016)
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70~ 10 001002005 01 02 0507 70¢ 10° 001002005 01 02 0507 .
Comparisons of strengths of constraints from individual data sets in 8 PDF
analyses using the common L, sensitivity metric. [pefinitions in the backup.]

An interactive website (https:/metapdf.hepforge.org/L2/) to plot such comparisons
[2070 figures in total; a code L2LHAexplorer to plot L2 sensitivities for LHAPDF grids]

2024-04-09 P. Nadolsky, DIS 2024 17




Ax?(L, sensitivity)

What defines the ¢ and b quark distributions in CT187?

—————————————————————————
® Use the L2 sensitivity to show the most sensitive experiments (in this case
the 8 most sensitive)

® Some experiments have positive L2 sensitivity (want to pull charm down),
while others have negative (want to pull charm up)

® The sum (at each x value) is approximately zero
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AX?(L, sensitivity)

-10

10

® Compare sensitivities of charm quark and gluon (at Q=100 GeV)

® \ery similar (as might be expected), since this is perturbative
charm (so would also be similar for b-quark distributions)
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V+HF: inputs for (s),b,c PDFs

® A heavy flavor quark can be present in the initial state or produced through
gluon splitting

b e AANNG

5,d/s,d ——>— NN\, W /W+
Y oo —— M : ;;;2 0000 E——— ¢/t

® The calculation can be performed in a scheme where there are only 4
parton flavours (4FNS) or in which the b-quark is included (5-FNS)

® The kinematics can drive the subprocess for the production, as for
example, whether the final state heavy quark (jet) has to pass only some
minimum pt requirement, or whether it has to roughly balance the boson
transverse momentum

® If it's the former, then the final state c or b quark is likely to arise through
gluon splitting, especially given the additional gluon splittings that may
occur in a parton shower (JHEP 02 (2018) 059)

this effect is more pronounced if there is a hierarchy of scales, i.e.
pet>>p.cham (would be useful to measure differentially in p{€!)



arXiv:1707.00657:JHEP02 (2018) 059
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FIG. 19: Transverse momentum distribution of Z bosons produced in association with at least one
charm jet at the LHC for V'S = 8 TeV. Both panels show SHERPA MEPS@LO predictions (obtained
by using proper charm tagging) for Z+jets production with a successively increasing number of

multileg matrix elements taken into account (i.e. nyyg = 1,2,3 where the nyyg = 1 curves serve

as the reference).




Intrinsic charm

Probing HF content of the proton
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Z+c jets (arXiv:2109.08084)

® The forward layout of LHCb makes it particularly sensmve to the
presence of any charm component at high x e

Z bosons  pr(p) >20GeV, 2.0 < n(p) < 4.5, 60 <m(ptp) < 120 GeV
Jets 20 < pr(j) < 100GeV, 2.2 < n(j) < 4.2
Charm jets pr(c hadron) > 5GeV, AR(j, ¢ hadron) < 0.5
Events AR(u,7) > 0.5

® For greater sensitivity, measure the ratio of
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Future inputs
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Figure 1. Left: Rapidity distributions of prompt charm at the LHC 13 TeV in the very forward region
(yc > 8) [11]. The error band represents the CT18NLO induced PDF uncertainty at 68% CL.

Right: NLO theory predictions for the rapidity distributions obtained with CT18NLO and CT18XNLO
PDFs compared to B* production data [28] from LHCb 13 TeV.



Summary

A key aspect of understanding the physics of heavy flavor jets at the

LHC is the understanding of heavy flavor quark distributions in the
proton

c and b quarks are produced perturbatively through gluon splitting, but

there is the possibility of an intrinsic component, which however has not
been firmly established

From BHPS-type of models for intrinsic charm, expect the effects to be
primarily at higher x

we are starting to probe this region with LHCDb, and will probe even
higher x values with forward detectors at the LHC
A full utilization of this data in PDF fits requires:

a proper match/mapping of algorithms used in NNLO theory and in
the data, i.e. the reason for this workshop

GM-VFN schemes that work at N3LO in the PDF fitting
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CT18QED: Photon PDF in the CTEQ-TEA global analysis

K. Xie, T. Hobbs, et al.
Phys.Rev.D 105 (2022) 5,

T T T B A | T T T
— A1 pol. unc. —HT
v, u=100 GeV) — 1.04p _ R )
’ £ _3113 uapol. _3{?8 1. In the small-x region, the
5 § 1.02F /[ uncertainty mainly originates
- N — RL/T _TMC e
) @ — from the quark and gluon
I 3 PDFs.
@] = 1.00
2 3] 2. At large x, all
9 2 098 .\l nonperturbative sources
= oY - contribute.
& "~ CT18lux — LUXqed17 3 B o/g PDF unc. Y(X, 4= éog (\;,"V) |
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X
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1. CT18ItX proviges the protor PDF at 1= et
all scales, p. 4 102} fi 5 105 7
2. CT18qed initializes photon PDF at p,, % £ Loon %
and evolves to high scales. 3) L0 = 80 1.00
3. CT18lux gives the photon in between 8 2
LUXged(17) and MMHT2015qed, while 3 2 95}
Kk 0.98f —CT18qed1.3GeV
CT18qged gives smaller photon. —CT18qed1.3GeV —QED fit
—QED fit photon, g = 100 GeV 650 ’ 7 ] i
0.96 5=~ 10'4 — 10'3 — "“1'6'_2 — 10'1 " 1075 10 1078 1072 107! 10°

xz

x
Global fit with QED evolution pull the quark PDFs back to the global
minimum and therefore enahces photon slightly.
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The PDF uncertainties for the o
combination in the PDF4LHC21 8
exercise is shown below. Same data sets §
used for all PDF fits. s
NNPDF3.1’is the smallest and CT18 is the u%

largest, with MSHT20 in-between.

NB: MSHT20 nominally does not use a fixed
tolerance, but instead cuts off an
eigenvector direction when a particular
experiment is badly fit. Thus, the uncertainty
can be notably affected by one experiment.
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For some special cases, K/ISHTZO and CT18
were both defined using a Ay? of 10 (see above).
The uncertainties are equivalent, as may be
expected from them both using similar data
sets, and in this case having the same criteria
for determining the uncertainty.
MSHT20-full-tolerance (i.e. the canonical
MSHT20) in some cases has a larger
uncertainty than MSHT20-T210, and in
some cases smaller, indicating that the
effective tolerance for the full fit is sometimes
less than 10 and sometimes greater.




PDF uncertainties

CT18 NNLO
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In a global PDF fit, there are tensions

between the input data sets, by
definition. These tensions are most easily

demonstrated by the use of the L2 sensitivity
above. For, example, some data sets pull the
gluon up at x~0.01, some down.

The end result of the pulling is the central PDF.
The PDF uncertainty reflects the size of those

pulls/tensions.

Typical y?/dof are of the order of 1.1 for >4000
points, or very unlikely from the pure statistical
POV. Ay?=1 does not capture the full uncertainty.
CT and MSHT use different criteria to define
those tensions/define the uncertainty.
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especially at low x, partially explained in 2404.10056.
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MC/Data MC/Data MC/Data

Large inflow of new measurements @LHC

Precise measurements Z + c¢/b-jets available from the ATLAS, CMS and LHCb collaborations at the LHC
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W+cC

jets

® Measurement carried out inclusively, and differentially as function

of pr and n of lepton

s,d/s,d

AVAVAVAVE Vi 5,d/s,d W /Wt
g 000000 ———— ¢/¢c g M c/c

Note: W and ¢ quark should
be of opposite sign; SS-0OS
suppresses contributions from
gluon splitting

arXiv:2112.00895 (submitted to EPJC)

19. 7fb (\(§ 8 TeV)
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Predictions: NLO MCFM + NLO PDF

= MMHT2014 ——— = MMHT2014 -
108.9:33% pb 0.921+0021

e CT14 e CT14 no strange
103.7+%5 pb 0.944 +0.905 quark asymmetry

v NNPDF31 —w v NNPDF31 s
107.5°¢3 pb 0.919+0928

A ABMP16 F—h— A ABMP16 a
111.933 pb 0.957 0001

T R Y ST T R

CMS 19 7 fb (\/§ 8 TeV) CMS
4 T J ' T ' ' ! T
Total uncertainty p]et > 25 GeV h]letl < 2.5 Total uncertainty
- Statistical uncertainty p > 30 GeV, hr]'l <2.1 - Statistical uncertainty

CMS: 0.983 = 0.010 (stat) = 0.017 (syst)
Predictions: NLO MCFM + NLO PDF
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Differential cross sections

Require an isolated lepton (e or
u) with p>30 GeV and |n|<2.1

arXiv:2112.00895 (submitted to EPJC)
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NNLO W+c-jet cross section calculation

Large reduction in uncertainties from NLO->NNLO
NNLO scale uncertainties smaller then PDF uncertainties
NB: the NNLO calculation used flavor tagging for the charm jet; the

experimental measurement used the antikT algorithm with later flavor
identification; NNLO corrections to subleading CKM-mediated
processes not included in this calculation (but are now available)

LHC 7 TeV PDF: NNPDF31

— LO

+; | o ,
W Jer * +—e— — NLO (flavor k)
JHEP 06 (2021) 100 ——  NNLO (favor kr)
N e —— NNLO PDF unc.
W Jef ¢ H—.—}—{: E— ATLAS (anti-kT)
10 115 2b 2I5 3b 3I5 4b 4|5 5|0 55
o [pb]
sizeable difference for NNLO
RW £ | ® Lo compared to data
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do/dE!. [pb/GeV]

NLO/Data LO/Data

Photon+charm jets

Photons measured in central and forward rapidity

Jets are defined with antikT algorithm, R=0.4; p/¢>20 GeV

if jet contains a b-hadron with pr>5 GeV within AR=0.3 of jet, then it is assigned as a
b-jet; if there is no b-hadron, but there is a charm hadron, it is assigned as a c-jet

All predictions agree reasonably well with data (relatively large uncertainties)

There are differences at high E; when intrinsic charm included in predictions of
similar size to uncertainties

NNLO predictions would be very useful (have to deal with photon isolation)
Phys.Lett.B776(2018) 295
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do/dE. [pb/GeV]

NLO/Data LO/Data

Photon+b jets

® 5FNS scheme works better then 4FNS scheme

® Best description of the data provided by Sherpa with up to 3
additional partons included in SFNS scheme

® Again, NNLO would be useful
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Z+b jets

® The b quark is treated as perturbatively produced by all PDF fitting groups; i.e.
inside the proton, at higher Q2 scales, only things that drive it are the b-quark mass
and the value of ag(my) f ———

MW 2 4 ) . ,
® Also sensitive to final state gluon splitting M z { b
I sooO—>— P g b q b

® (Calculation can be performed either in 4FNS or 5SFNS

ATLAS JHEP 07 (2020) 44 CMS-SMP-20-015 arxiv:2112.09659
Partial run 2 dataset: 35.6 fb! * Full run 2 dataset: 137 fb!

Z+=1or=2bjets, b-jet p;>20GeV, |y| <2.5 1¢ Z+>1o0r=>2bjets, b-jet p;>30GeV |n| < 2.4
b-jet tagger: = 70% efficiency * b-jet tagger: = 50% efficiency (tight WP)

Testing several MC predictions with 4 and 5 FNS:
5FNS includes b quark in PDF

Kinematic variable Acceptance cut i Object Selection
Lepton pt pr > 27 GeV | Dreszsic:) le(z)itons pr (leading) > 35 GeV7,1pL (Isc;ble:ciilnlg) >25GeV, || <24
Lepton 7 Inl <2.5 i Particle-level bjet bhadron jet, pr >€go GeV, |n| <24
mee mee =91 £ 15 GeV :
b-jet pr pr > 20 GeV i
b-jet rapidity lyl < 2.5 i
b-jet-lepton angular distance | AR(b-jet, £) > 0.4 : 16




Z+b jet

————————————————————————————————————————————————————————————————————————
® The b quark is treated as perturbatively produced by all PDF fitting groups;
i.e. inside the proton, at higher Q2 scales only things that drive the PDF are

the b-quark mass and the value of a¢(my)
® Also sensitive to gluon splitting (and multiplicative factor of parton shower)

b —»

9 oo b QM: a:;;;zb
® Calculation can be performed either in 4FNS or 5SFNS
4FNS underestimates cross section; better agreement withSFNS

Sl

ATLAS JHEP 07 (2020) 44
[rerprrrp e e |
ATLAS
{s=13 TeV, 35.6 fb™
Z(—ll) + = 1 b-jet
-- 10.90 £ 0.03 + 1.08 + 0.23 pb
Data (stat.) l Data (stat.+syst.)

L L] AI thls Ll T L] l T Ll Ll L} l T L]
\s=13 TeV, 35.6 fb’
Z(—ll) + = 2 b-jets
-- 1.32 +0.01+0.21+0.03 pb
Data (stat.) l Data (stat.+syst.)

m Sherpa 5FNS (NLO)

note Fusing prediction o
A MGaMC+Py8 Zbb 4FNS (NLO)

m Sherpa 5FNS (NLO)
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Most important information comes from differential distributions, though

® NNPDF3.1 PDF is the most up-to-date of the PDFs shown; would be nice
to have comparisons of more modern PDFs as well (CT18, MSHT20,

NNPDF4.0 (NNPDF3.1")
ATLAS JHEP 07 (2020) 44
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Z+b at NNLO prediction

® Carried out by combining a massless NNLO and a massive NLO
computation at order (o¢3) (arXiv:2005.03016)

initial state b-quarks from gluon splitting resummed by PDF evolution; finite b-quark mass
effects also incorporated (presumably same could be done for Z+c)

note: massless calculation means IR-safe definition of jet flavour must be used; not
consistent with experimental choice

desired to have data unfolded to level of partonic flavour-kT jets or some equivalent
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Figure 2: The transverse momentum distribution of the lead-
ing flavour-kt b-jet. The absolute cross-section is shown in
the upper panel, the ratio to the unfolded data in the central
panel, and the ratio to the NLO 5fs prediction in the lower
panel. The shown uncertainty of the FONLL distributions
are due to scale variations alone.
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Figure 3: As in Fig. [2] now for the absolute psudorapidity
distribution of the leading flavour-kr b-jet. 10



What is the L, sensitivity...continued?

® The L, sensitivity provides a visualization of what is
happening inside the PDF fit

® [t can be considered as a faster version of Lagrange Multiplier
scans (but dependent on the Gaussian approximation)

® The L, sensitivity streamlines comparisons among
independent analyses, using the log-likelihood (x?) values for
the fitted experiments and the error PDFs

® Both the L, and LM methods explore the parametric
dependence of the 2 function in the vicinity of the global
minimum

® The L, sensitivity has been used internally by CT (in CT18),
by the PDF4LHC21 benchmarking group (to determine which

data sets should be in the reduced PDF fit used for
benchmarking), and now by CT, MSHT and ATLASpdf in this
upcoming paper



Strange/charm PDFs

Consider the strange quark PDF

There is a large difference between CT18 and
CT18A/MSHT20/NNPDF3.1 due almost entirely to
the ATLAS 7 TeV W/Z data (see my talk on Monday)

The difference between the W and Z cross sections
requires a larger strange quark (s-sbar->2)

All 3 groups fit the ATLAS W/Z data equally
poorly

Because of its fitting criteria, CT18 does not use the
7 TeV W/Z data for its main fit (but it is in CT18A)

W+c data offer another window on the strange quark
distribution

NNPDF3.1 has a different charm distribution then
CT18/MSHT20, due to its fitting the charm
distribution as a free parameter, rather then
generating perturbatively through gluon splitting; an
intrinsic charm component may be present at high x

CT has published PDF sets in which an intrinsic
component of charm is modeled. The addition of this
intrinsic component leads to a small, but noticeable,
reduction in global 2

Z+c/y+c offers another window on the charm quark

PDF4LHC21: arXiv:2203.05506
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XS

(W+c) strange quark PDF

® Derived CMS strange quark consistent with that
obtained by CT18 and MSHT20 for x<0.01;
somewhat larger at higher x

* NB: MSHT20 includes ATLAS 7 TeV W/Z data

strangeness suppression factor
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(W+c) strange quark PDF

® Derived CMS strange quark consistent with that
obtained by CT18 and MSHT20 for x<0.01;
somewhat larger at higher x

« NB: MSHT20 includes ATLAS 7 TeV W/Z data 1.4\
® Compare to results from ATLAS PDF21 fit

e CT18 does not include ATLAS 7 TeV W/Z
data, CT18A does

Strangeness suppression factor
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thanks to Francesco Giuli for making
the ATLAS plots



W+c at NNLO-differential

JHEP 06 (2021) 100
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W+c at NNLO

— NNLO uncorr.

—— NNLO PDF unc.

dRy=; /dpr,

Ry /RS,

® Ratio plots sensitive to s-s asymmetry
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