Analysis preservation in HEP It matters and we can do better

(with a heavy LHC(b) bias) UK-HEP 2024

N. Skidmore Nov 2024

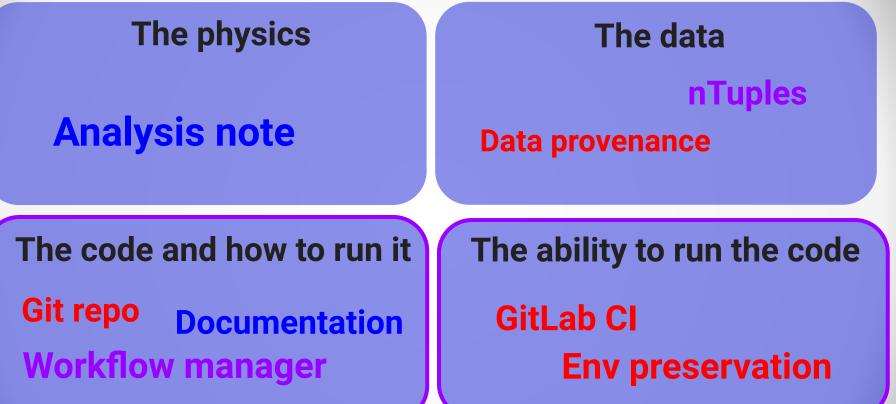
Story time...

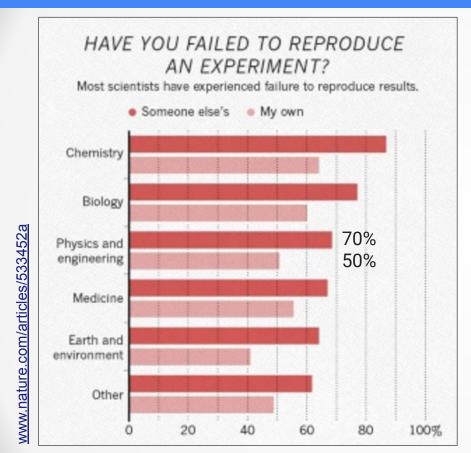
Me: 2014 - 2017

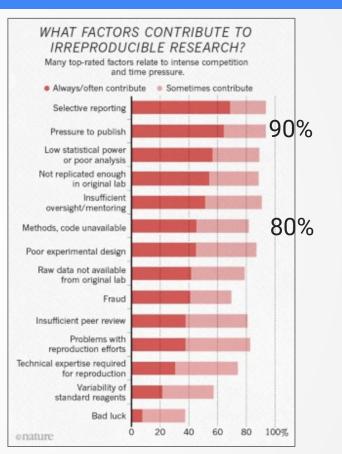
Why do we need to preserve?

Analyses now take longer than a PhD (> 4 years)

• The analysis will have to be "handed over" to a new student (or orphaned 😞)


More complex analyses require more people


- High person-turnover is a feature of our fields
- Analysis preservation infrastructure aids collaboration



What do we need to preserve?

5

Theorems, lemmas, corollaries...

"""The proof is too ugly to show anyone else. It would be too much work to rewrite it neatly so that others could read it."""

"""I didn't actually prove the theorem - my student did. They have since graduated and now work as a Quant. But the student was very good... I'm sure the proof was correct."""

"""Giving the proof to my competitors would be unfair to me. It took years to prove this theorem, and the same idea can be used to prove other theorems."""

	Not Share
The time it takes to clean up and document for release	77.78%
Dealing with questions from users about the code	51.85%
The possibility that your code may be used without citation	44.78%
The possibility of patents or other IP constraints	40.00%
Legal barriers, such as copyright	33.72%
Competitors may get an advantage	31.85%
The potential loss of future publications using this code	31.11%
The code might be used in commercial applications	28.15%
Availability of other code that might substitute for your own	21.64%
Whether you put in a large amount of work building the code	20.00%
Technical limitations, ie. webspace platform space constraints	20.00%

+ Student left

+ Self -conscious about code

10 rules for Reproducible Computational Research

Rule 1: For Every Result, Keep Track of How It Was Produced

Rule 2: Avoid Manual Data Manipulation Steps

Rule 3: Archive the Exact Versions of All External Programs Used

Rule 4: Version Control All Custom Scripts

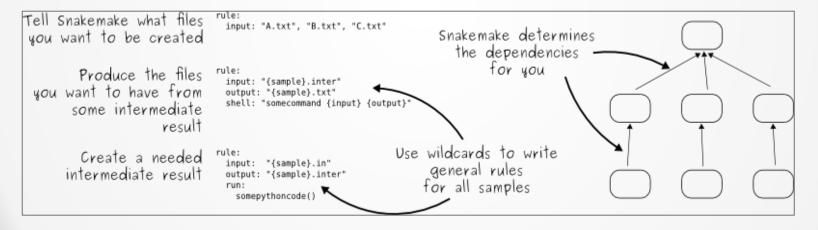
Rule 5: Record All Intermediate Results, When Possible in Standardized Formats

Rule 6: Always Store Raw Data behind Plots

Rule 7: Generate Hierarchical Analysis Output

Rule 8: For Analyses Including Randomness, Record Random Seeds Important for pheno!

Rule 9: Connect Textual Statements to Underlying Results


Rule 10: Provide Public Access to Scripts, Runs, and Results

Unrealistic with big datasets

Rule 1: For Every Result, Keep Track of How It Was Produced

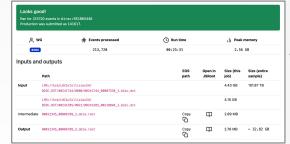
Workflow managers

- Breaks analysis into bite-size rules with input, output and command
- Preserves:
 - How to run scripts
 - How every intermediate result is produced (the workflow)
 - The dependency between analysis stages

Rule 2: Avoid Manual Data Manipulation Steps

Centralise as much as possible

LHCb analysis productions for declarative ntupling


- Centralise and automate ntuple creation with DIRAC transformation system
 - Full job testing on GitLab CI
 - Full data provenance

CHEI

at

alk

elow. See TOD			i is the recomm	ended way	or requesting da	itasets. Clicking	on one of the boxes	will filter the list of sam
Grouped tags	Config	💽 datatype 💽	eventtype 🧲	polarity				
Drag to sort	config	datatype eventty	pe polarity					
as_fs_run2 00				_				(
mc 44						Ihob 16		
2016 12			2018 12			2015 4	2016 4	
13264021 4		13264031 4	13264021 4		13264031 4	90000000 4	90000000 4	
magdown 2	magup 2	magdown 2	magdown 2	magup 2	magdown 2	magdown 2	magdown 2	
13164042.4		magup				magup	magup	
magdown	magup 2	2	13164042 4		magup	2	2	
2	2		magdown 2	magup 2	2			
2017 12						2017 4		
13264021 4		13264031 4				90000000 4		
magdown	magup	magdown	2015.8			magdown	magup	
2	2 2	2	13264021.4	1:	3164042.4	2	2	
			magdown		nagdown			
			2	2		2018 4		
13164042 4		magup				90000000 4		
magdown 2	magup 2	2	magup 2	2	nagup	magdown 2	magup 2	

Comprehensive job testing through GitLab pipelines

Simple yaml job configuration

('2024Data', 'MagUp', '24c2'),

What application to run

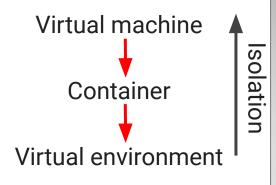
Job options

Data to run on

13

Containers and virtual environments

- Containers encapsulate a computing environment including OS
- Virtual environments only encapsulate Python dependencies


Questions for a new collaborator

- 1. How do I login?
- 2. How do I access the data?
- 3. How do I setup my environment?
- 4. How do I get the analysis s/w libraries?
- 5. How do I run the analysis steps?

Containers

Virtual

environments

These do take some time and setup but they enable

- Quick onboarding
- Efficient collaboration

Talk by Gordon Watts

Rule 3 - Archive the Exact Versions of All External Programs Used

Containers and virtual environments

- Containers encapsulate a computing environment including OS
- Virtual environments only encansulate Python dependencies

"Well it works on my machine..."

Virtual

environments

Containers

Questions

- 1. How do I login?
- 2. How do I access the data?
- 3. How do I setup my environment?
- 4. How do I get the analysis s/w libraries?
- 5. How do I run the analysis steps?

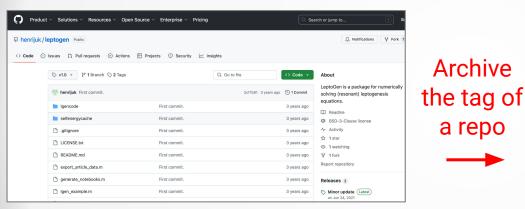
These do take some time and setup but they enable

Virtual machine

Container

- Quick onboarding
- Collaboration
- Publishable software
- Reuse and repurposing

15

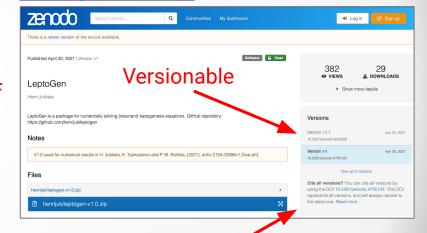

solation

ment

Rule 3 - Archive the Exact Versions of All External Programs Used

Package and version software

• Encourage packaging, versioning and long term maintenance of software tools

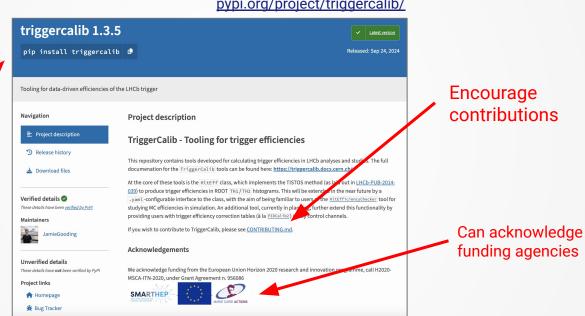


Note added

Arxiv paper

The Mathematica code package that was used to compute all numerical results in this paper is publicly available at https://doi.org/10.5281/zenodo.5025929.

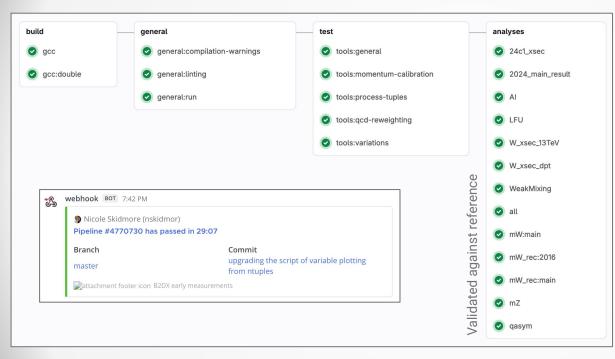
zenodo.org/records/4705125

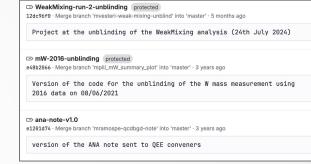


Persist identifiers - DOIs

Rule 3 - Archive the Exact Versions of All External Programs Used

Package and version software


PyPI package installable with pip



pypi.org/project/triggercalib/

Rule 4: Version Control All Custom Scripts

Git repo and CI

Rule 9: Connect Textual Statements to Underlying Results

1820

1800

1840

1860

1880

Notebooks

- Notebooks provide a way to connect physics reasoning and code
- Can run notebooks in containerised analysis environments

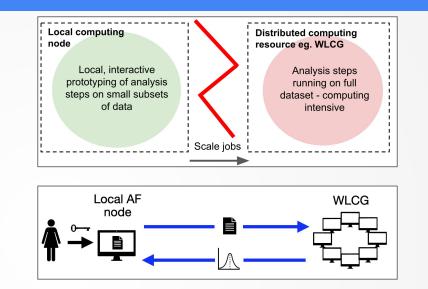
	Notebook examp	ole with MC	CM/AN average
	Lets look at some $B ightarrow D\pi$ MC	C data using RDataFrame	SWAN example
	Plot the <i>B</i> and <i>D</i> mass		
[8]:	<pre>import R00T R00T.gErrorIgnoreLevel =</pre>	= ROOT.kInfo	
	files=["/eos/lhcb/wg/b2c	oc/TD_Bs2Dsh_Run2/MC_Run2/Str:	ipping34_Sim09h/B2DX_MC_11264001_Bd_D-pi_2018_dw.root"]
	<pre>ntupleName = "Bd2DPi0ffl</pre>	lineTree/DecavTree"	
	fileName = files[:1]	<pre>rame(ntupleName,fileName)</pre>	
		ame(fitup tename, fittename)	
	<pre>canvas = R00T.TCanvas() Dmass=dataframe.Filter("</pre>	'lab0_M>4800 & lab0_M<6000").H	Histo1D("lab2_M")
	Dmass.GetXaxis().SetRang Dmass.Draw() canvas.Draw()	geUser(1800, 2000)	
		lab2_M	
	≝ ⁴⁵⁰ ⊢	lab2_M	lab2_M Entrice_2041361
	tun 850	lab2_M	Entries 2941361 Mean 1869
		lab2_M	Entries 2941361
	tun 850	lab2_M	Entries 2941361 Mean 1869
		lab2_M	Entries 2941361 Mean 1869
	400	lab2_M	Entries 2941361 Mean 1869
	450	lab2_M	Entries 2941361 Mean 1869
	400	lab2_M	Entries 2941361 Mean 1869
	400	lab2_M	Entries 2941361 Mean 1869
	400	lab2_M	Entries 2941361 Mean 1869
	400	lab2_M	Entries 2941361 Mean 1869

1900

1920

1940

lab2 M


Rule 9: Connect Textual Statements to Underlying Results

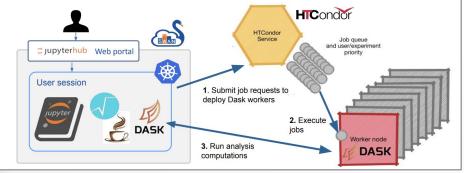
Analysis facilities

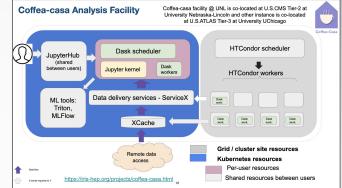
"Infrastructure providing the <u>data</u>, <u>software</u> and <u>computational resources</u> to execute (an element of) an analysis workflow. ... shared and <u>supported</u> through virtual organization."

154th LHCC Meeting

"The LHCC recommends that experiments engage in the process of developing and defining the structure of the future Analysis Facilities"

- AFs allow automatic, transparent **scaling** to batch resources from interactive session (notebook)
- Authentication, submission and retrieval abstracted away from user
- Results returned as if job was run locally

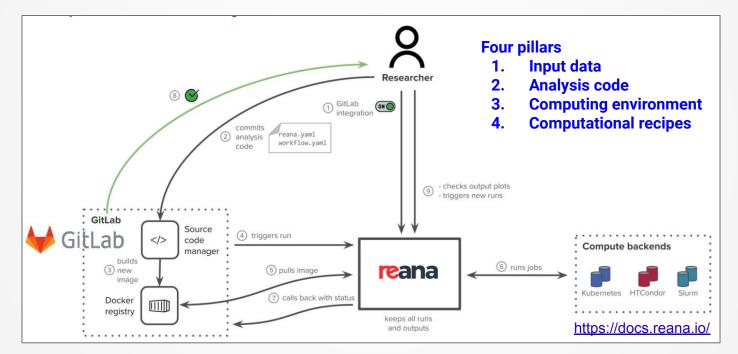

Rule 9: Connect Textual Statements to Underlying Results


AF infrastructure for ATLAS and CMS US analysts is advanced

- Jupyterhub (interactive notebooks)
- Integrated Dask scheduler for scaling to batch resources
- Token based AAI

Focus on scale out of interactive analysis

- On already existing CERN Batch system resources
- Via RDataFrame / coffea + Dask


CERN's SWAN service has deployed **AF** pilot

"Interactive computing on big datasets, with analysis built on frameworks like RDataFrame and coffea"

SWAN AF talk at CHEP

Rule 10: Provide Public Access to Scripts, Runs, and Results

REANA - REproducible ANAlysis platform that can run containerised analysis pipelines on remote computing resources


```
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import quad
```

def sawtooth_wave(x):
 return x / 3.14

√ 0.5s

import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad

def sawtooth_wave(x):
 return x / 3.14

x=[]

```
for i in range(100):
    x.append(-3.14+i/1000.)
x=np.array(x)
plt.plot(x, sawtooth_wave(x))
plt.show()
```

0.5s

import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad

def sawtooth_wave(x):

.....

Generates a sawtooth wave function.

Args: x: The input x-values.

Returns:

The sawtooth wave function.

return x / np.pi

Define x-axis values
x = np.linspace(-np.pi, np.pi, 1000)

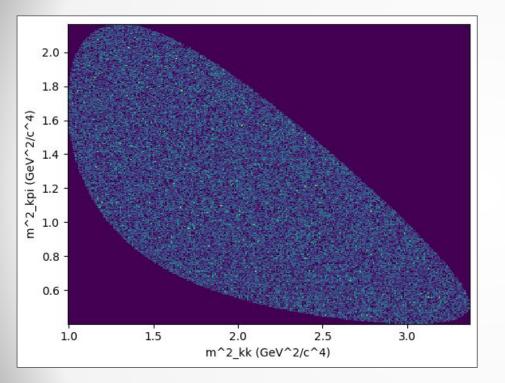
Plot the sawtooth wave
plt.plot(x, sawtooth_wave(x))
plt.xlabel("x")
plt.ylabel("y")
plt.title("Sawtooth Wave")
plt.grid(True)
plt.show()

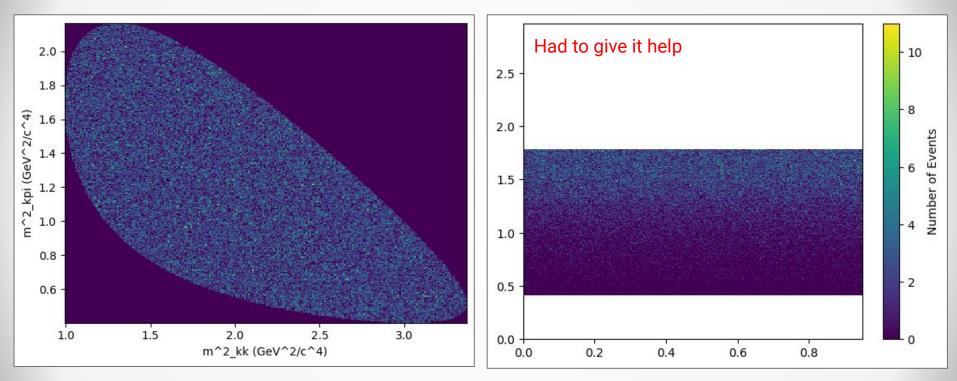
pi not hardcoded

Doc-string with purpose and arguments

Use of numpy arrays allowing vectorisation

Plot labels and formatting


But not with the physics


Task 1

Write a function(s) that generates n decay events of $D_s^+ \rightarrow K^+ K^- \pi^+$ that are uniformly distributed over the allowed phasespace. The parameter n should be an argument of your function. Plot these events on a Dalitz plot for n = 100000 using a hist2d with 300x300 bins.

- "Allowed phasespace" here refers to the kinematically allowed region of the Dalitz plot, ie. the area shown in the example Dalitz plots above.
- Use the same units (GeV^2/c^4) and axes as in the example Dalitz plot on the left. To ease communication and make the code clearer we will use $d \rightarrow abc$ notation for the decay such that you will be working with the variables:
 - $\,\circ\,$ m2ab the invariant mass squared of the K^+K^- system
 - $\,\circ\,$ m2bc $\,$ the invariant mass squared of the $K^-\pi^+$ system
 - $\,\circ\,$ md, ma, mb, mc the masses of the decaying D_s meson and the 3 decay products respectively
- The masses you should use are
 - o m_dmeson=1.97
 - ∘ m_kaon=0.498
 - m_pion=0.135

Hint: Use the accept-reject Monte Carlo method with NumPy functions. You only need to generate m2ab and m2bc values for the events. The range of m2bc values kinematically allowed given a m2ab value can be found in eqn 49.23a and 49.23b of the PDG review (note that the PDG uses $M^+ \rightarrow 1^+2^+3^-$ notation)

The long term...

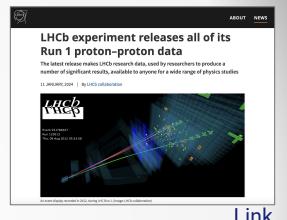
The datasets we use are too valuable to not enable their full exploitation by all

- Some are completely unique and may remain so for some time eg. SMOG2
- Internal work on **preserving and opening** these must happen now

Last month...

Search for $h_b(2P) o \gamma \chi_{bJ}(1P)$ at $\sqrt{s} = 10.860$ GeV Belle Collaboration \cdot A. Boschetti Show All(142) Oct 21, 2024 e-Print: 2410.16181 [hep-ex]

Report number: Belle Preprint 2024-07; KEK Preprint 2024-19

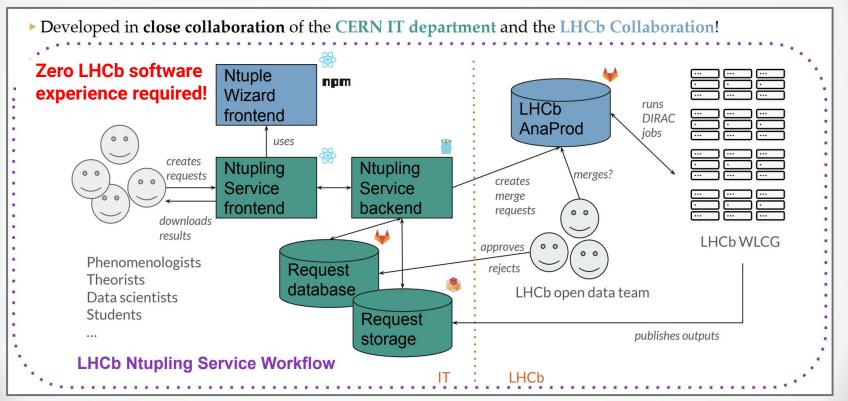

Experiments: KEK-BF-BELLE

View in: ADS Abstract Service

Making data open

The <u>CERN Open Data Policy</u> encourages the release of reconstructed data

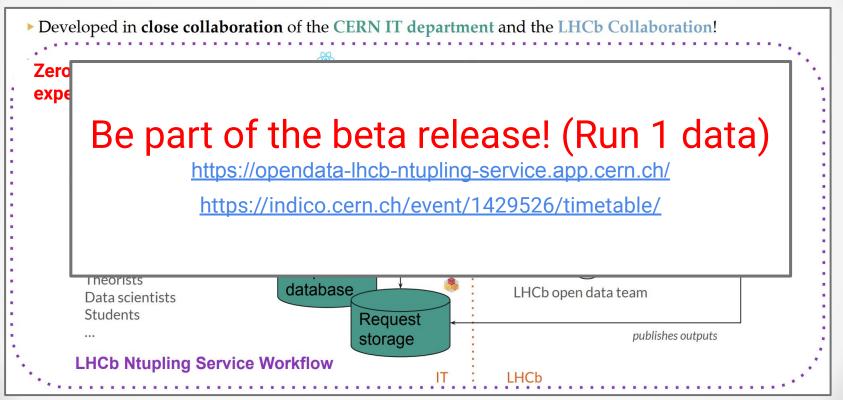
- Data from all LHC experiments released through the Open Data Portal
- LHCb released its full Run 1 dataset ~ 800TB


Releases for Run 2 and beyond impossible due to data volume - not scalable!

	ALICE	ATLAS	CMS	LHCb
Run-2	2 PB	0.5 PB	2 PB	10 PB (including Run-1)
Run-3	4 PB	1 PB	4 PB	45 PB
Total	6 PB	1.5 PB	6 PB	55 PB

Making data open

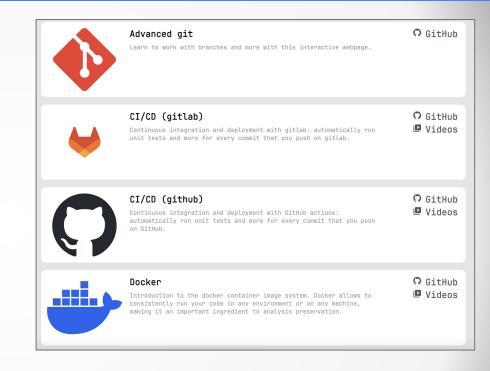
Scalable solution - NTuple Wizard!


CHEP talk on NTuple Wizard

Making data open

Scalable solution - NTuple Wizard!

<u>CHEP talk</u> on NTuple Wizard



Tutorials

hsf-training.org/training-center/

- Git
- CI/CD
- Docker
- Singularity/Apptainer
- Reana
- Analysis essentials incl. Snakemake
- Julia

Self-study and in-person events

Close to home...

"Your closest collaborator is you six months ago...

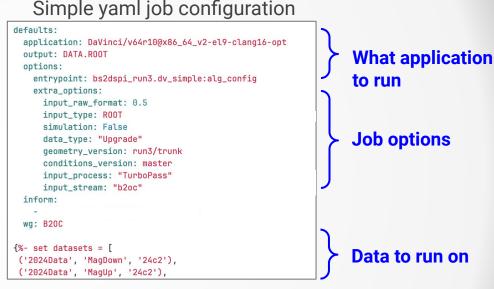
but you don't reply to email."

Karl Broman

"Tools for Reproducible Research"

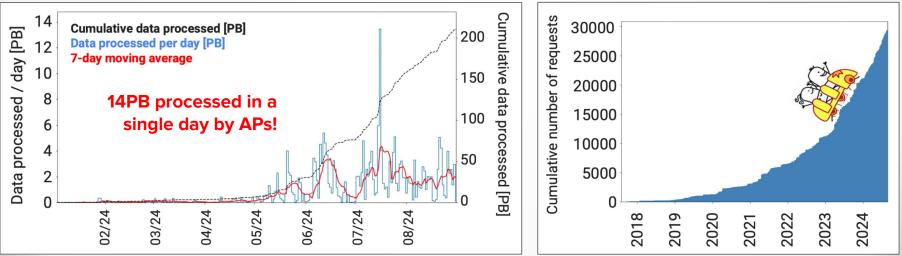
Pre - run 3 analysts made their own ntuples

THE PROBLEM


- Submitting, monitoring and error handling O(10,000) grid jobs
- No data provenance
- Thousands of failing grid jobs

 \Rightarrow BIG barrier between analysts and data

THE SOLUTION ⇒ Analysis productions


- Centralise and automate ntuple creation
 ⇒ Saves countless analyst-hours
- Exploit DIRAC transformation system
 ⇒ Full data provenance
- Full job testing on GitLab CI
 ⇒ No buggy jobs on grid

Use Jinja templating to "render" the YAML

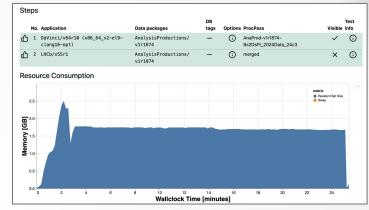
Full adoption of analysis productions at LHCb

- Over 1200 Run 3 APs have been submitted so far
- 700+ "live" APs picking up data as it was Spruced
 - Analysts have been looking at data tuples days after it was recorded by detector
- We are making amazing use of the WLCG!

Comprehensive job testing through GitLab pipelines

e w	G # Events processed	(L) Run time		Peak	momory
B2OC		00:25:31		2.56	
iputs and	d outputs Path	EOS path	Open in JSRoot	Size (this job)	Size (entire sample)
nput	LFN:/lhcb/LHCb/Collision24/ B20C.DST/00241744/0000/00241744_00007538_1.b20	oc.dst		4.43 GB	101.87 TB
	LFN:/lhcb/LHCb/Collision24/ B20C.DST/00241585/0021/00241585_00210894_1.b20	oc.dst		4.15 GB	
ntermediate	00012345_00006789_1.data.root	Copy	Ψ	2.89 MB	
Intermediate Output			Φ	2.89 MB 2.76 MB	~ 3

Reporting on estimated output size


LHCb Data Processing and Analysis @lhcbdpa · 1 week ago Maintainer ⊘ 🙂 🕤 🖉 🗄

👋 Welcome to Analysis Productions!

This is a summary of the productions requested in this merge request:

Step	Production ID	Num Test LFNs	Run time	Estimated Output Size (MB)
Bs2DsPi_2024Data_MagDown_24c2	123713	2	0:42:06.715033	3.1
Bs2DsPi_2024Data_MagUp_24c2	123714	2	0:40:23.311033	3.0
Bs2DsPi_2024Data_MagUp_24c3	123715	2	0:25:31.108833	2.6
Bs2DsPi_2024Data_MagDown_24c3	123716	2	0:19:40.963231	2.5
Bs2DsPi_2024Data_MagDown_24c4	123717	2	0:35:30.184766	3.2

Reporting on memory usage

Interactive logs with warning/error highlighting

Logs	show less output
DaVino	ci_l.log prmon_1.txt prodConf_DaVinci_1.json LHCb_2.log prmon_2.txt prodConf_LHCb_2.json DIRAC.log
Copy [ے Download کے
1	Overriding DIRACSYSCONFIG to /tmp/tmp1_mfqfq8,/tmp/pilot.cfg
2	Restarting process with ['/cvmfs/lhcb.cern.ch/lhcbdirac/versions/v11.0.48-1727212764/Linux-x86_64/bin/dirac-production-request-run-local', '/tm
3	Executing workflow locally
4	Executing from /tmp/951865446
5	Executing job at temp directory /tmp/951865446/Local_99hwjh07_JobDir
6	File not found Request_0_AnalysisProduction_AnaProd-v1r1874-Bs2DsPi_2024Data_24c3_EventType_94000000_B20C_1.xml
7	Job has input data requirement, will attempt to resolve data for DIRAC.LocalProdTest.local
8	Replica Lookup Time: 0.48 seconds
9	Metadata Lookup Time: 0.12 seconds
10	Job has a specific policy setting: DIRAC.WorkloadManagementSystem.Client.DownloadInputData

apd python packages allows for easy data file retrieval. Snakemake integrations!

Tree display

1 from apd import AnalysisData 2

3 datasets = AnalysisData("b2oc", "bs2dspi_run3")

4 bs2dspi_2024data_magdown_24c2_pfns = datasets(polarity="magdown", eventtype="94000000", datatype="2024")

Full data provenance with datasets tagged by analysis