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SOLAIRE’s origin
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Light Dark Matter Detector

SoLAr Neutrino Detector

SOLAIRE
• Both targeting rare events 
➡Compatible radioactivity 

requirements 

• Synergy of techs: 

‣ DS Readout - Low E 

‣ SoLAr readout - High E 

• In discussion for multiple years 

with Boulby Underground Lab 

• Supported by the GADMC as the 

next generation LDM detector



e-𝛘

S1

S2

✘

S2-only search for LDM
Lower the energy threshold ⇒ Look at the S2 only events
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• S2 >> S1 (23ph/e- in DS50) 

• 100% Trigger eff. > ~40PE

✘

• 100% S2 identif. eff. > ~30PE 

• Thresholds: <0.1keVee, 0.4keVnr
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Why LAr
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✘

Kinematics: momentum transfer is maximal when MDM ~ MTarget

TargetDM DM
Target

Inefficient p-transfer
10.1103/PhysRevD.98.102006



LDM Drives
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LDM backgrounds
• Beta spectra in DS50: 39Ar + 85Kr 

• Compton scatters from gammas in TPC + photosensors + cryostat 

• Low Ne events: Spurious Electrons
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SoLAr Readout Drives
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• Aim: demonstrate technology for a future kton-scale 

detector to observe neutrinos from the hep branch: 

 and precise measurement 
8B flux 

• Requirements: 

• Low cryostat radioactivity to suppress  

and  reactions 
• Technology - Dual pixel charge and light readout 
➡Energy resolution: 7% @ 5MeV 
➡ 3D position reconstruction with mm-like resolution

3He + p → e+ + νe

40Ar(n, γ)
40Ar(α, γ)



Cryostat and passive shielding
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• Proto-Dune Style Membrane 

Cryostat by Neutrino Platform  

• Outer dimensions (with support 

beams): ~ 4.2 x 4.2 x 3.7 m3 

• Inner dimensions:                      

~ 2.5 x 2.5 x 2.0 m3 

• Passive shielding:  

‣ ~7 cm of OF 99.995% copper 

‣ ~13 cm of high-purity HDPE 



TPC
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• Single Phase TPC 

• Dimensions: 2 x 2 x 1.6 m3 
➡  9 tonnes of LAr (atmospheric) 

• Nominal drift field: 500V/cm  
➡  Same as SBND, good for LDM search 

• ProtoDune/SBND Structure:  

‣ Field cage: copper or stainless steel 

‣ Cathode: stainless steel 

‣ Anode: integrated sensors



Outer Detector
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• Reflector+WLS on cathode and field cage 

• Readout: charge+light integrated sensors  

• 48 boards of 25 x 25 cm2 instrumenting 3m2 

• Board:  

‣ 78 x 78 = 6084  1mm2 charge pixels 

‣ 13 x 13 = 169  6mm2 Hamamatsu VUV SiPMs 

‣ 96 Q-Pix/LArPix chips to readout the charge 

‣ 3 LightPix chips to readout the light 

• 10% anode optical coverage 
➡  3% photon detection efficiency
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Inner Detector

• ID is deployed as a module in the TPC. Fill with Underground Argon (>1400 less 39Ar than AAr). 

• The volume above the diving bell contains LAr, but E null field. Active veto against SiPMs’ radioactivity. 

• 1m2 of DarkSide-like SiPMs organized in 400 25cm2 tiles+readout channels. New, cleaner, thinner FEBs.



A Staged Approach
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SOLAIRE sketch NOT to scale
• Phase 1- Atmospheric Argon fill 

‣ Only OD is commissioned and 

demonstrates SoLAr dual-readout 

capabilities (6 months, Q4 2027 - Q2 2028) 

‣ The central section in the anode readout 

might be instrumented with additional 

boards, depending on international funding. 

• Phase 2 - Underground Argon fill 

‣ ID is commissioned, OD acts as 𝛾 veto 

‣ At least 12 months of DM science runs      

Q1 2029 - Q1 2030
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Cryogenics & fielding @ Boulby

• Argon transport vessels provide on-site storage capability 

• UKRI STFC RAL + Daresbury responsible for safety scope
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• Multiple Gar and LAr extraction points 

to clean the target from impurities. 
➡Suppression of Spurious Electrons.



Backgrounds & Suppression Strategies
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• Betas: 

• 39Ar  ➡  7.3(73) uBq/kg in UAr  ⃪⃪  optimistic(conservative) scenario 

• 85Kr, 3H or other contaminants ➡ Completely suppressed by ARIA chemical purification plant 

• Gammas: 
• From TPC materials and SiPMs  
➡No lateral walls, R&D on SiPMs, active gamma veto to reduce Compton continuum 

• From cryostat and cavern: 
➡passive shielding of copper and HDPE 

• Neutrons - Important for neutrino physics goals ➡ suppressed by HDPE inner lining shield 

• Spurious Electrons: 
• Lower than DS-50 levels 
➡ avoidance of TPB, purification system with extraction of argon in gas and liquid phases



Physics Reach
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• Leading SI WIMP-nucleon cross-section sensitivity 
‣ Substantial sensitivity <0.1GeV/c2 using Migdal 

• Electron scattering DM: 
‣ x100 improvement over existing light and heavy 

mediator limits 
• Demonstration of technology for Neutrino Physics



Conclusions
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• SOLAIRE offers an opportunity to the UK to host an international DM experiment with world-leading 

discovery potential and multiple science outputs by the end of the decade.  

• Beyond the 1 yr DM run, this facility can be upgraded (new detectors, dopants, etc.) to extend its 

reach and physics sensitivity beyond currently planned period (2030 onward). 

• It capitalizes on investments in LAr (for neutrinos and DM), silicon photosensor production, and 

testing capability, promoting international leadership in a unique new experimental facility.  

• Development, installation and operation of SOLAIRE supports expertise and capability building for a 

future liquid noble detector at scale at Boulby. 

• Provides a unique international facility for deployment of new technologies for underground rare 

event searches from the DRD initiative. 
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Thank you!



LDM Design Drives
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Reduce radioactivity and improve target purity
• Betas: use UAr passed in Aria distillation column 

• Aria will completely separate out any 85Kr, 3H or any other 

chemical contaminant - Throughput O(100kg/d) 

• Aria can deplete the UAr of 39Ar by x10 - Throughput O(10kg/d) 

• Gammas: SiPM photosensors + active veto around the DM target 

• Limited R&D on substrates and materials will lower “DS-20k 

style” photosensors to the necessary level. 

• The LAr surrounding the target must be instrumented as a veto 

• Spurious Electrons: improved purification system 

• Already funded R&D to study the SEs generation mechanism and 

allow the design of targeted mitigation.



LDM Design Drives
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Gamma Active Veto  

• The TPC is designed with 

minimal amounts of material to 

lower radioactivity and to avoid 

dead volumes 

• External LAr volumes are active 

to detect gamma scattering in 

and out of the TPC and veto 

such coincidences. 

• Energy threshold: 100 keVInner Detector 
envelope  



Conceptual design
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SOLAIRE sketch NOT to scale • Have a single drift electric field for the DM 

detector (ID) and SoLAr (OD) 

• Top the central part of the anode with a diving 

bell to form a thin gas pocket 

• Instrument the area above the diving bell with 

DarkSide-like SiPM-based photosensors. 

• Instrument the rest of the anode with SoLAr 

charge&VUV integrated sensors 

• Mount WLS+reflectors on all other surfaces to 

enhance energy threshold and resolution 

• Passive shielding to suppress radiogenic 

events from cryostat and cavern.
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Conceptual design
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Conceptual design
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Conceptual design
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SOLAIRE sketch NOT to scale • Have a single drift electric field for the DM 
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Conceptual design
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High Level Milestones
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