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Introduction

There is a strong motivation to push the energy frontier
into the 10s of TeV range. As well as the indirect
sensitivity to BSM accessed through high-precision
measurements of high-mass/ rare processes

(Higgs/Top/EW), target direct access to:
o (WIMP) dark matter
o Probe EWK baryogenesis and shape of Higgs potential.
o Maximise sensitivity to broad range of BSM particles.

Exploration is key, but all options would present
significant experimental and theoretical challenges
= opportunities for study in the coming years!

Will focus on FCC-eh/hh and the muon collider, but note
that arguments relevant for FCC could apply to a 100
TeV pp collider in the CEPC tunnel.
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Assumptions in sensitivity projections

Lepton colliders: Projections are m<vs/2, with  Hadron colliders: multiple approaches

assumptions: _ _ _ o _
1. Directly simulate collider beam, collision physics

e Particles are pair produced and detector response, and analyse resulting
e Backgrounds are low samples.
e High enough cross-section / luminosity 2. Extrapolate from LHC (run 2) using parton

luminosity assuming reconstruction efficiencies,
background rejection and signal-to-background
ratios remain constant.

Need to be careful at higher energies when
primary production mode would be VBF so
particles produced at ranges of energies.
If you want to try this- check out the “collider reach”
programme http://collider-reach.web.cern.ch/

A lot of assumptions here that should be tested- opportunities for future study!


http://collider-reach.web.cern.ch/

Benchmark collider scenarios

Table taken from snowmass EF report:
https://arxiv.org/abs/2211.11084

For FCC-hh : some early studies look
at impact of varying COM energy in 80-
120 TeV range (little impact) but more
planned.

Collider Type NG P%] Lint
(TeV) | e~ /et | ab™!/IP
HE-LHC pp 97 15
FCC-hh pp 100 30
SPPC op | 75-125 10-20
LHeC ep 1.3 1
FCC-eh 3.5 2
CLIC ee 1.5 +80/0 2.5
3.0 +80/0 )
p-collider — pp 3 1
10 10

~20 years

~ 5 years
~ 5 years


https://arxiv.org/abs/2211.11084
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Case study: SUSY

*Strong-production processes — like top squarks, see in hh an advantage, as expected.
Compressed scenarios better covered with muon collider - similar consideration for

EWK sparticles including staus

*Consider 10 TeV muon and 100 TeV hh comparisons in the plots below
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See Snowmass BSM report: https://arxiv.org/abs/2209.13128
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Case study: (minimal-WIMP) dark matter

Higgsino 2 o~ Reach

For minimal WIMP dark matter- EW multiplet
with clear thermal targets.

For lepton colliders, X+MET analyses dominate
at lower energies with disappearing track more
sensitive at higher energies. Mono-muon and
mono-W important at muon collider.

Sensitivity of disappearing track analysis strongly
dependent on mass splitting and detector
design.

For both hh and muon colliders, key to study
impact of pileup (mu~1000) and beam-induced
backgrounds on tracking efficiency.
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Case study: Dark matter
Constraints from Higgs->invisible
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Early studies (https://arxiv.org/pdf/2303.14202) indicate uC competitive with FCC-hh through measuring forward muons
in VBF. Result depends on ability to instrument the forwards region (tungsten nozzles).



https://arxiv.org/pdf/2303.14202

Case study: hidden sectors

--------------- 1 e EF colliders have the
MuC 10 TeV
_________ HL-LHC potential to either indirectly
_____________________ (through higgs self coupling)
: or directly probe a first order
EWPT through discovering
new particles responsible.
e LH plot shows additional
heavy singlet mixing with

\‘~~\S\Y =mh/mS

-~ Higgs that could be detected

10| | | . | 95% C.L. exclusions 3
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ms [TeV] production.
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Long-lived particles @ future EF colliders

e Detector geometry choices that provide
similar hermeticity for prompt particles can
differ significantly in their ability to
reconstruct LLPs — important to consider
LLP searches when designing future
detectors.

e Background rejection can be as important
as signal acceptance.

e Also consider dedicated LLP detectors at
future colliders (and whether to integrate
their trigger/readout with GPDs).
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Case study: resonances

Take Z’ as “standard candle” .

Complementarity between pp and lepton colliders-
FCC-hh has highest sensitivity for direct searches for
masses < 28 TeV, muon collider can go to lower

couplings and indirectly probe masses >100 TeV
Y-Universal Z, 20

1.4} HL—LC
1.2F
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gz 0.8}
0.6}
0.4f
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0.0

Taken from snowmass BSM report

https://arxiv.org/abs/2209.13128

Machine Type Vs JLdt Source Z’ Model 50 95% CL
(TeV) (ab™) (Tev) (Tev)
RH. Zw > dijet | 42 5.2
HL-LHC pp 14 3 ATLAS | Zgu>1+1- | 6.4 6.5
MS | Zgw>1*1- | 63 6.8
EPPSU* 7' yivl8,/=0.2) 6

ILc250/ ete 0.25 2 ILC 2oy > T T 4.9 7.7
cLic3so/
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HE-LHC/ pp 27 15 EPPSU* 7' ymivlg7=0.2) 11
AT ATLAS | Zgy->ete | 128 12.8
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https://arxiv.org/abs/2209.13128

Complementarity between FCC-eh and hh- BSM

e Unique opportunities for leptoquark searches up to 3
TeV.

e Sensitivity to compressed supersymmetric scenarios
that would elude discovery at FCC-hh.

e Novel charged current interactions for Heavy Neutral
Lepton (HNL) discovery
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Hadron vs muon colliders: strengths and weaknesses

pp collisions:

But:

Favour QCD couplings — strongest sensitivity for
strongly produced processes (i.e. squarks and
gluinos).

High luminosities enable study of rarer
processes.

High theoretical uncertainties on proton PDFs at
high energies- but expect significant theoretical
development (EW bosons in PDFs).

Large QCD backgrounds and challenging pileup-
can we simulate mu~1000, including non-jet
components, reliably? (it isn’t integrated in current
toolchain).

Muon collisions:

e Primary production mechanism VBF =
favour BSM with EW couplings.

e Smaller theoretical uncertainties on
(smaller) backgrounds.

But:

e Lower s-channel production cross-
sections.

e Need to handle beam-induced
backgrounds due to muon decay.
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Complementarity beyond colliders

>
>

In-keeping with desires to “delve deep” and

= 2
%” %if‘é* “search wide”, 10 TeV pCM colliders provide
g % E‘ strong complementarity to sensitivity
g =8  achieved across neutrino physics, direct
31;3 detection and through
- bbb S, _astrophysical/cosmological probes.
zeV fev ueV eV MeV TeV 10 Mo

Dark matter mass

Similarly if gravitational wave signals indicative of 1st order PT in Early Universe
were seen, EF searches could directly probe the new physics responsible.
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Challenges/opportunities for further study.

e Reconstruction: highly boosted objects.

For hadron colliders: how to model pileup ~1000. Can we build detectors in
such extreme environments?

e Muon colliders: beam induced background requires careful study and restricts
detector design (many projections rely on ‘precision’ associated with lepton
collisions that could be compromised by BIB).

e For both colliders: new physics studies planned for next ESPPU (see next
slide)

l.e. lots of areas where we could make key contributions!
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The roadmap ahead: how to get involved

FCC-hh: dedicated kick-off meeting on 3rd September aiming to plan studies to feed into the
ESPPU: https://indico.cern.ch/event/1439072/

e Dedicated efforts planned for new studies for ESPPU

e Opportunity to build on previous UK efforts towards FCC-hh under the FCC-UK umbrella (i.e.
https://indico.cern.ch/event/1147914/ and https://indico.cern.ch/event/1254077/)

Muon collider: UK workshop in B’ham on July: https://indico.stfc.ac.uk/event/983/

e ESPPU studies run through IMCC (Tuesdays at 4 pm)

Great opportunity to get involved in either!
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Conclusions

e 10 TeV pCM machines allow a broad exploration that could directly discover
BSM physics linked to key questions about our universe- DM, EWPT as well as

characterising NP discovered indirectly through precision measurements at a

Higgs factory.

e Lots of complementarity between FCC-hh and a muon collider — a world
where we could have both would be very exciting!

e Lots of opportunities to contribute to (new) studies for the ESPPU- please get in
touch if interested!

“Every time we increase pCM 10-fold...

... we learn something entirely new!” (Christophe Englert, yesterday)
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Back up



Adding an electron-proton collider to the FCC: FCC-eh

The FCC-eh:
Eg=60 GeV Concurrent ep + pp
50 TeV protons, Vs = 3.5 TeV (eA +AA)

1 operations

Integrated luminosity: ~ 1-2 ab

Physics complementarity FCC-hh/FCC-eh
*PDFs, strong coupling constant, low-x measurements
*W mass, top mass, on other precision measurements
*Higgs measurements with additional sensitivity

*Searches for new physics, including prompt and long-lived new
scalars from Higgs, SUSY particles, heavy neutrinos, dark photons
and axions

*High-energy and high-density measurements of heavy ion collisions
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Impact of FCC-eh on FCC-hh: PDF

«Complete unfolding of parton contents in unprecedented kinematic
range: u,d,s,c,b,t, xg

gg luminosity

luminosit .
e Range relevant for new heavy particles

and where new physics can be!
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LLP (2)

Interpreting the results for a specific
model, where lifetime and production rate of
the LLP are governed by the scalar mixing

Dark photons
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