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Neutrinos

Long baseline neutrino programme looks very strong
DUNE phase 1 is under construction
= Supported by Fermilab as a neutrino source
DUNE phase 2 is considered
= P5 report
T2HK is under construction
= Beam upgrade
= Detector upgrade
Its crazy to talk about future after DUNE & T2HK
= 20+ years away with good science in the meantime
= Saturated physics community delivering existing facilities
But:
= Not clear there is a path for superbeams beyond next generation
= Time required to deploy a major new facility is ~25 years



DUNE — plans (potential)

Experiment Stage  Physics Milestone Exposure Years
(kt-MW-years) (Staged)

Phase | 560 MO (dcp = —7/2) 16 1-2
50 MO (100% of dcp values) 66 3-5
30 CPV (dcp = —7/2) 100 4-6

Phase I 50 CPV (écp = —7/2) 334 7-8
dcp resolution of 10 degrees (0cp = 0) 400 8-9
50 CPV (50% of dcp values) 646 11
30 CPV (75% of dcp values) 936 14
sin?265 resolution of 0.004 1079 16

Neutrino beam available in 2032

Snowmass Neutrino Frontier: DUNE Physics Summary, Dune Collaboration, https://arxiv.org/abs/2203.06100
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T2HK

Acceptable beam power
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= T2HK
= Accelerator upgrade to 1.3 MW
= Far Detector upgrade
= Near Detector upgrade
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Direct Production
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= Direct production — event rate follows
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beam power on target * detector mass

= Detector mass proportional to budget (linear with time)
= Beam power historically rises rather slowly with time

= What is the limit?




Limits on proton beam power

= Beam loss
= Rule of thumb — allow 1 W/m of uncontrolled loss
= As beam power increases, fractional loss decreases
0.25 MW ISIS — O(1) % losses
Increasing beam current makes things harder

= Space charge
= Instabilities

Losses need to be better controlled
= 2.5 MW — 0O(0.1) % losses

= Technology limits
= Heat load on target
* Moving targets
= Liquid metal targets
= Heat load on injection foil
= Foil “strips” H™ into H*
= Laser stripping is an R&D topic



Beam quality & systematics

Need to consider systematic errors
= Ratio of number/species of neutrinos at source vs energy

= Improve knowledge of v source composition & energy

= Measure pion distribution from target
= E.g. HARP, NA61/SHINE

Measure flux before oscillation
= E.g. Near detector
= E.g. DUNE-PRISM
= Move ND off-axis(!)
= Scan the neutrino energy distribution
= Check reconstruction matches expected
energy distribution

= Will T2HK and DUNE be systematics limited?

= Improve physics models — improve detector resolution
= Enubet
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Hadron dump
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= Slowly extract protons to a target

" Produce pions and kaons

= Monitor decays of kaons in the decay tunnel
= Either pulsed extraction or CW extraction

= 1 kaon every 70 ps or every 1 ns
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ENUBET (2)
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* Identify positrons from kaon decay ™ @ Electron
= Understand v, rate and beam @ neutrino .
kinematics 2009 Pion | |'.
= Estimate pion rate — v, | |
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= Map individual kaons to neutrinos ’ “

using time coincidence

= Understand individual neutrino
kinematics
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Neutrinos from

Muons - NnuSTORM
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= Lifetime of muons is “long" — store muons while they decay
= Very pure, well characterised beam
= Very good knowledge of neutrino distribution from muon decay

= Measure number of neutrino interactions in different materials

= Seek to understand neutrino cross-sections
= Drill down systematic uncertainty in the neutrino distribution

= Also BSM physics
= Also nuclear physics
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Alternative sources

= Neutrinos arise from radioactive decay
= | Pions

" | Kaons Lifetime <30 ns (8 m) — “direct production”
= | Etc

“neutrino factories”
“huSTORM”

= | Nuclear decay Flexible lifetime — “beta beams”

= Note lifetimes are time dilated in the lab frame
= Alternative sources can be chosen to improve beam quality
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nuPIL
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Beta beams

Baseline, low-Q isotopes Optional, high-Q isotopes

Linac 160 MeV, 1.2 MW
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New installations in red

= Beta decay produces electron + electron neutrino
= Generate (anti-)v from (inverse)B decay
= E.g. accelerated °He and ®Ne
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Neutrino Factory

Neutrino Factory (NuMAX)
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= How to improve precision further?

= Take the nuSTORM concept further

= Enhanced muon capture
= Use solenoid and beam cooling

= Accelerate muons in a linac
= Storage ring
= Much improved source
= Tunable neutrino energy (with appropriate baseline)
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Neutrinos from Muon Collider
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= Muon collider is a neutrino factory
= (O(1el3) muons per second )
= “Decay” straight O(1e-3) of the ring =
= Neutrino beam is narrow and very high energy — pile up 15
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Timeline

= For intermediate complexity facility e.g. nuSTORM
= Establish project — physics reach, funding, etc
= Magnet prototypes — complicated SC dipoles
= Magnet production
= Excavate tunnel
= Install equipment
= Commission
= Need to establish a plan in this ESPPU “cycle”
= Opportunities will start disappearing through inaction
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Conclusion

= Not clear there is a path for superbeams beyond next generation
= Time required to deploy a new facility is ~25 years

= Need to establish a plan in this ESPPU “cycle”
= Opportunities will start disappearing through inaction
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