Quantum Technology for Fundamental Physics

Martin Bauer, 16.9.2024

Quantum Technology...

..is technology that exploits the fundamental principles of quantum mechanics.

Quantum Technology...

..is technology that exploits the fundamental principles of quantum mechanics.

Tunneling, particle nature of photons, energy quantisation...

...entanglement, superposition and coherence

Quantum Technology...

..is technology that exploits the fundamental principles of quantum mechanics.

Tunneling, particle nature of photons, energy quantisation...

...entanglement, superposition and coherence

Quantum technology public investment

@QURECA Ltd. 2024, all rights reserved

Quantum technology public investment

Quantum technology applications

First example:

Quantum gravitometers

Measures acceleration via the interference pattern that results when atom waves recombine after splitting into different paths

Quantum technology applications

Second example:

Quantum-optical tomography

Interference of entangled photons to measure surface structures

Quantum technology applications

Third example:

Low energy neutrino detectors

Quantum dots are electron traps that induce quantised energy levels

physicsworld

Q

Audio and video ▼ | Latest ▼

(f)

y

in

ACCELERATORS AND DETECTORS | RESEARCH UPDATE

Quantum dot liquid scintillator could revolutionize neutrino detection

19 Aug 2024

Safer scintillator Researchers at King's College London are developing a water-based scintillator made from quantum dots for neutrino detection. The experimental setup shows a sample of quantum dots in water solution placed in front of a photomultiplier tube. (Courtesy: King's College London)

Quantum Technology for Fundamental Physics

Quantum Technology from Fundamental Physics

Fundamental Physics

We want to answer fundamental questions...

- What is dark matter?
- Is there a fifth force?
- Are there extra dimensions?
- Where is the anti-matter?
- Is gravity a quantum theory?

•

We know a lot about dark matter from cosmology and astrophysics.

But what is dark matter at a fundamental level?

If dark matter was in thermal equilibrium in the early Universe it interacts like a particle today

What if dark matter is very light? It behaves like a wave

$$a(x,t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\cos(\omega t - \delta)$$

Mass is fixed by halo size

$$m_a \gtrsim 10^{-22} \, \text{eV}$$

Amplitude is fixed by the dark matter energy density

$$\rho_a = \frac{1}{2} m_a^2 a_0^2 \stackrel{!}{=} \rho_{\rm DM} = 0.3 \frac{\text{GeV}}{\text{cm}^3}$$

The angular frequency is determined by the rest mass.

$$\omega \sim m_a$$

Small corrections from the kinetic energy

$$\frac{\Delta\omega}{\omega} \sim \frac{m_a v^2/2}{m_a} \sim 10^{-6}$$

Coherence time is set by the frequency spread

$$\tau_c = \frac{2\pi}{\Delta\omega} = \frac{2\pi}{m_a v^2} \approx 1 \text{s} \left(\frac{\text{MHz}}{m_a}\right)$$

Resonant cavities

$$P_{a \to \gamma} = \frac{\alpha^2}{\pi^2} \, \frac{\left(c_{\gamma\gamma}^{\text{eff}}\right)^2}{f^2} \, \frac{\rho_{\text{DM}}}{m_a} B_0^2 V C \min(Q_L, Q_a)$$

MB, Chakraborti, Rostagni, "Axion Bounds from Quantum Technology,", [arXiv:2408.06412 [hep-ph]]

Standard model fields in this background

$$\mathcal{L} = -m_e \bar{\psi}_e \psi_e + g \, a \bar{\psi}_e \psi_e$$
$$= (-m_e + g a) \, \bar{\psi}_e \psi_e$$
$$= -m_e^{\text{eff}}(a) \, \bar{\psi}_e \psi_e$$

Can be described with time-dependent masses and coupling constants

$$m_e^{\text{eff}}(a) = m_e \left(1 + \frac{a_0}{m_e} \cos(\omega t - \delta) \right)$$

Clocks and clock-cavity bounds

$$rac{\delta
u_{A/B}}{
u_{A/B}} = k_lpha rac{\delta lpha}{lpha} + k_e \left(rac{\delta m_e}{m_e} - rac{\delta m_p}{m_p}
ight) + k_q \left(rac{\delta m_q}{m_q} - rac{\delta \Lambda_{
m QCD}}{\Lambda_{
m QCD}}
ight)$$

Unique sensitivity to ultra-light states via precision measurements of transition frequencies

MB, Chakraborti, Rostagni, "Axion Bounds from Quantum Technology,", [arXiv:2408.06412 [hep-ph]]

Ion clocks

$$\frac{\delta\nu_{A/B}}{\nu_{A/B}} = k_{\alpha}\frac{\delta\alpha}{\alpha} + k_{e}\left(\frac{\delta m_{e}}{m_{e}} - \frac{\delta m_{p}}{m_{p}}\right) + k_{q}\left(\frac{\delta m_{q}}{m_{q}} - \frac{\delta\Lambda_{\rm QCD}}{\Lambda_{\rm QCD}}\right)$$

Laser interferometers

$$\frac{\delta l}{l} = -\left(\frac{\delta \alpha}{\alpha} + \frac{\delta m_e}{m_e}\right)$$

$$\frac{\delta n}{n} = -5 \times 10^{-3} \left(2\frac{\delta \alpha}{\alpha} + \frac{\delta m_e}{m_e}\right)$$

Atom interferometers

$$\Phi_s = 4\,\overline{\omega_a}n\Delta r\sin^2\left(m_aT\right)$$

Time

Another way to observe dark matter is via absorption

Depending on the quantum numbers of the dark matter states these can be forbidden transitions

Software to automate the calculation of the overlap integrals and transition rates covering all dark matter candidates is now available

Fifth forces
$$V_5 = N_1 N_2 \alpha_5 \frac{\exp(-r/\lambda)}{r} \hbar c$$

Fifth forces
$$V_5 = N_1 N_2 \alpha_5 \frac{\exp(-r/\lambda)}{r} \hbar c$$

Fifth forces
$$V_5 = N_1 N_2 \alpha_5 \frac{\exp(-r/\lambda)}{r} \hbar c$$

Induces a change in energy levels that can be probed with atomic and molecular spectroscopy

$$\begin{split} \left\langle \Delta V_{5,\lambda} \right\rangle &= \alpha_5 N_1 N_2 \big[\left\langle \Psi_{n',\ell'}(r) | Y(r,\lambda) | \Psi_{n',\ell'}(r) \right\rangle \\ &- \left\langle \Psi_{n'',\ell''}(r) | Y(r,\lambda) | \Psi_{n'',\ell''}(r) \right\rangle \big] \hbar c = \alpha_5 N_1 N_2 \Delta Y_{\lambda} \hbar c \end{split}$$

Isotope differences can determine how the fifth force couples to up- or down-type quarks, electrons or muons

Combined data improves sensitivity

Many forces are much more important at short distances

$$V_{\nu}(r) \sim \frac{1}{r^5} e^{-m_{\nu}r}$$

Potvliege et al. "Deuterium spectroscopy for enhanced bounds on physics beyond the standard model," Phys.Rev.A 108 (2023) no.5, 05282

Are there extra dimensions?

Additional dimensions change the way gravity propagates

Large distances $r \gg R_n$

$$V_{\rm N}(r) = -\alpha_G N_1 N_2 \frac{1}{r}$$

Small distances $r < R_n$

$$r < R_n$$

$$V_{\text{ADD}}(r) = -\alpha_G N_1 N_2 R_n^n \frac{1}{r^{n+1}}$$

Are there extra dimensions?

Additional dimensions change the way gravity propagates

Large distances $r \gg R_n$

$$r \gg R_n$$

Small distances $r < R_n$

$$r < R_n$$

$$V_{\rm N}(r) = -\alpha_G N_1 N_2 \frac{1}{r}$$

$$V_{\text{ADD}}(r) = -\alpha_G N_1 N_2 R_n^n \frac{1}{r^{n+1}}$$

$$\left\langle V_{\text{ADD}} \right\rangle = -\alpha_G N_1 N_2 \left[\int_{R_n}^{\infty} \Psi^*(r) \frac{1}{r} \Psi(r) r^2 dr + R_n^n \int_{0}^{R_n} \Psi^*(r) \frac{1}{r^{n+1}} \Psi(r) r^2 dr \right]$$

Salumbides et al., "Constraints on extra dimensions from precision molecular spectroscopy,"New J. Phys. 17 2015, 3 3015

The university has much more matter than anti-matter. How did it get there?

The laws of nature need to distinguish between the two: CP violation

An asymmetry can be generated via baryogenesis

Bubble collisions generate gravitational waves

Cutting, Hindmarsh, Weir, "Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice," Phys. Rev. D **97** (2018) no.12, 123513

Bubble collisions generate gravitational waves

Bubble collisions generate stochastic gravitational waves with a peak frequency determined by the percolation temperature

32

AION covers a frequency band not covered by existing and future laser interferometers

Is gravity a quantum theory?

What -if any- quantum features does gravity have?

Some properties can be tested by entangled macroscopic states

Is gravity a quantum theory?

What -if any- quantum features does gravity have?

Some properties can be tested by entangled macroscopic states

Is gravity a quantum theory?

Entangled nanodiamonds to probe quantum properties of gravity

Wood, Morley,

"Towards a test of quantum gravity with a levitated nanodiamond containing a spin," Proc. SPIE Int. Soc. Opt. Eng. **11881** (2021), 71

35

Conclusions

Quantum technology is both a product of and a driving force for advancements in fundamental physics

Fundamental questions push technology to it's limits and trigger novel technology

The UK has a unique opportunity to lead in this field. Boulby could play a central role