

The Classical Double Copy: A Duality Between Exact solutions in Gauge and Gravity theories

Kymani Armstrong-Williams

Centre for Theoretical Physics, Queen Mary University of London

apw796@qmul.ac.uk

Introduction

- Theories of particle physics (such as the standard model) are best described by a special type of quantum field theory called *non-abelian gauge theories*.
- Recently, a new relationship between scattering amplitudes for nonabelian gauge theories and gravity has been discovered, known as the <u>Double Copy</u> (Bern, Carrasco, and Johansson).
- The Double Copy has allowed us to calculate previously unobtainable scattering amplitudes results in gravity, by "building" them out of analogous results in non-abelian gauge theories. (used as a tool in gravitational scattering problems and gravitational waveform corrections)

The Classical Double Copy

- It was soon realized that this duality at the level of scattering amplitudes, existed at the level of classical physics for certain exact solutions between General Relativity and Classical Non-abelian Gauge theories (e.g Yang-Mills Theory).
- This became known as the **Classical Double Copy** (Luna, Monteiro, Nicholson, O'Connell, White).
- The best-known case of the Classical Double Copy is the Weyl Double Copy, which relates certain vacuum solutions in Classical Electromagnetism and General Relativity. (Nicholson, O'Connell, Godazgar, Godazgar, Peinador Veiga, Pope)
- This relationship relies on rewriting our solutions in the language of two-component spinors.

Weyl Double Copy in Practice

ELECTROMAGNETISM: We can write the electromagnetic field strength $F_{\mu\nu}$ tensor in terms of spinors:

GRAVITY: For vacuum solutions, the *Riemann Curvature Tensor* $R_{\mu\nu\rho\lambda}$ is reduced to the Weyl Tensor $W_{\mu\nu\rho\lambda}$. The Weyl Tensor translated in terms of spinors is given as:

$$W_{\mu\nu\rho\lambda} \rightarrow W_{AA'BB'CC'DD'} = \Psi_{ABCD} \varepsilon_{A'B'} \varepsilon_{C'D'} + \Psi_{A'B'C'D'} \varepsilon_{AB} \varepsilon_{CD}$$

$$\uparrow \qquad \qquad \uparrow$$

$$\text{Weyl Spinor}$$
Conjugate Weyl Spinor

Electromagnetism

Weyl Double Copy in Practice

For vacuum solutions in General Relativity that are of Petrov type **D** or **N**, we can express them in terms of analogous solutions in electromagnetism:

Gravity
$$\Psi_{ABCD} = \frac{\phi_{(AB}\phi_{CD)}}{S}$$

S is some scalar which is a harmonic function.

Weyl Double Copy in N = 0 Supergravity

The Weyl Double Copy has been extended to work for more *Exotic* theories of gravity such as N = 0 Supergravity. (*KAW, White*)

For *N=0* Supergravity, the Riemann Curvature tensor in the language of 2-components is *no longer* given by just the Weyl Tensor:

$$R_{\mu\nu\rho\lambda} \to \mathbb{X}_{ABCD} \epsilon_{A'B'} \epsilon_{C'D'} + \mathbb{X}_{A'B'C'D'} \epsilon_{AB} \epsilon_{CD} + \Phi_{ABC'D'} \epsilon_{A'B'} \epsilon_{CD} + \Phi_{A'B'CD} \epsilon_{AB} \epsilon_{C'D'}$$

$$\Psi_{ABCD} = X_{(ABCD)}$$

Weyl Double Copy in N = 0 Supergravity

For *N*=0 Supergravity, in addition to the usual Weyl Double Copy statements, we can write down a Double Copy relationship for the so-called *mixed indexed fields* from the Riemann curvature spinor:

$$\Phi_{ABC'D'} = U^{C}_{C'}U^{D}_{D'}\left(\frac{\Phi_{(AB}\Phi_{CD)}}{S}\right)$$

$$U_A^{A'} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$U^{A}_{A'} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\widetilde{\Phi}_{A'B'CD} = U_C^{C'}U_D^{D'} \left(\frac{\Phi_{(A'B'}\Phi_{C'D')}}{\widetilde{S}} \right)$$

Weyl Double Copy with Sources

The Weyl Double Copy has now been extended to work with non-vacuum solutions for Einstein-Maxwell Gravity. (KAW, Moynihan, White, Manton, Easson, Svesko)

These results were derived using methods inspired by methods from Twistor Theory and Quantum Field Theory. (KAW, Moynihan, White)

Kinematic Algebras

- One consequence of the Double Copy, was that gauge theories had a much *richer algebraic structure* than previously thought.
- Gauge theories are now known to possess so-called Kinematic Algebras.
- We currently believe that kinematics algebras are in general **not** Lie algebras, but some more general mathematical structures such as **homotopy algebras**. (Reiterer; then Borsten, Jurco, Kim, Macrelli, Saemann, Wolf; Bonezzi, Chiaffrino, Diaz-Jaramilo, Hohm, Plefka)
- Kinematic algebras were formerly only associated with Quantum Field Theories, but it has been shown that they exist for classical physics as well. (KAW, Nagy, Wikeley, White)

Diffeomorphisms and Kinematic Algebras

The Kinematic Algebra of a linear theory (e.g electromagnetism) is associated with special transformations called *diffeomorphisms* (Fu, Krasnov).

Diffeomorphism = simultaneous translation along all integral curves (field lines) of the vector field.

Recalling that $F_{\mu\nu}$ can be written in terms of so-called gauge (vector) fields $A_{\mu}(x)$:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\mu}A_{\nu}$$

We can think about this field as being "valued" in terms of diffeomorphism and so-called gauge (local symmetries) symmetries:

Infinitesimal diffeomorphism

$$\mathbf{A} = A^{\mu a} \partial_{\mu} \mathbf{T}^{a}$$

Infinitesimal gauge transformation

$$A^{\mu}$$

$$A^{\mu} = A^{\mu a} \mathbf{T}^{a}$$

Electromagnetism in Light Cone Gauge

We can fix the "local symmetries" that arise in our gauge field, via something called a gauge transformation.

For electromagnetism, we make a gauge choice that *restricts* our gauge field to a special gauge choice called **Light Cone gauge**.

We describe Light cone gauge using a *special* set of coordinates (u, v, x, y).

In Light Cone gauge, we can directly **geometrically** *visualise* the kinematic algebra for the theory.

The kinematic algebra we see is a special type of diffeomorphism known as *area-preserving diffeomorphisms* (in particular *symplectomorphism*), which act in 2-D planes in either (u, x) or (u, y) planes.

Area Preserving Diffeomorphisms

$$A_1 = A_2$$

Open Questions

- It turns out we can use our understanding of kinematic algebras in linear theories, to construct the Lagrangians of non-linear gauge theories (QED coupled to scalar matter) (KAW, Nagy, Wikeley, White). Can we make this process more general and how is it related to the Double Copy?
- We can derive kinematic algebras for theories relevant to condensed matter physics (non-abelian Chern-Simons theory (Ben-Shahar & Johansson)) and beyond (fluid mechanics) (KAW, Nagy, Wikeley, White). Can we gain any physical insight from the kinematic algebras?
- Can we find (Classical) Double Copies for more exotic theories (CFT, AdS, Supergravity, de sitter, cosmology)?
- So far, every example of the Classical Double Copy has been exact solutions that linearise the equations of motion for both gravity and gauge theory. Can we find a Classical Double Copy for truly non-linear solutions?

Conclusions

- The Double Copy is a duality between Non-abelian Gauge Theories and Gravity for both scattering amplitudes in quantum field theory and exact solutions in Classical Physics.
- The Classical Double Copy has been recently extended to work in non-vacuum solutions (Einstein-Maxwell Gravity) and exotic theories such as *N=0* supergravity.
- Kinematic algebras are new and exciting structures present in gauge theories.
- There is plenty more to explore on the Double Copy!

