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Introduction

von Neumann or Entanglement Entropy: Density matrix ρ =
∑
i

pi |ψi ⟩⟨ψi |

S = −
∑

i

pi log(pi ) = −Tr(ρ log ρ)

EE quantifies entanglement: A unique feature of QM not present in CM are non-local
correlations i.e., |ψ⟩AB in HAB cannot always be factorised as |ψ⟩A⊗|ψ⟩B in HA ⊗HB

(also HAB does not always factorise).

|ψ⟩ = √
pk
∑
k

|ψk⟩A⊗|ψk⟩B

ρA =
∑
k

pk|ψk⟩A⟨ψk|

ρB =
∑
k

pk|ψk⟩B⟨ψk|

Entangled pure state in HAB imply mixed states in HA and HB

SAB = 0, SA = SB and is non zero. Hence captures both non local entanglement and
local correlations (if mixed in HAB). Also notice S(UρU−1) = S(ρ).
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Motivation: Why EE?

Measure of Information: The average minimum number of bits required to encode data
{ai} with probabilities {pi} is equal to the Shannon entropy. Any less loses information.

Quantifies correlation: S(AB) ≤ S(A) + S(B): equal if ρAB = ρA ⊗ ρB .
Difference I(A:B) quantifies correlation. Alternative to ⟨OAOB⟩ − ⟨OA⟩⟨OB⟩.
EE and correlators (Moitra, Sensarma PRB 108 (2023)).
S(AB) < S(A) =⇒ entanglement.

Condensed matter: Understanding many body quantum systems. Thermalization, Many
Body Localization (A.Pal, and D. A. Huse, PRL (2010)), Measurement Induced phase
transitions (B Skinner, J. Puhmann, A.Nahum, PRX (2019))...

AdS/CFT - Ryu Takayanagi:

SA = min
R∼A

Area(R)

4G

Ryu, Takayanagi PRL 96 (2006)
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Main motivation: Black hole information and page curve

Sgen =
Area of horizon

4G
+ Srad

Start with black hole in pure state. As it
evaporates it loses area dM

dT
∼ σAT 4 ∼ 1

M2 .
After a time Srad > SArea and there are not
enough dof in BH to purify radiation. Non
unitary!

Unitary evolution follows page curve
(Don page PRL (1980))
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∼ σAT 4 ∼ 1

M2 .
After a time Srad > SArea and there are not
enough dof in BH to purify radiation. Non
unitary!

Unitary evolution follows page curve
(Don page PRL (1980))

Quantum extremal surface and islands

S = min ext (SQFT + Sarea)

(Wall, Engelhardt (2014))
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Island

Important in black hole evaporation. We need to minimize generalised entropy for
candidate subregions. The presence of a QES not at asymptotic infinity implies that the
complementary subregion has a region disconnected from the asymptotic boundary -
Island. (Penington, Shenker, Stanford, Yang; Almheri, Mahajan, Maldacena, Zhao...)

Correlation between island and region between QES and asymptotic boundary brings
down EE at later times and preserves unitarity.

This is a statement about how the EE of the black hole/ radiation (provided we started
with a pure black hole) must behave to preserve unitarity. What does this translate to for
the QFT spectrum, correlation functions of the radiation?
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Conditions for Island

ds2d = −gtt(r)dt
2 + grr (r)dr

2 + r 2dΩ2
d−2

subregion: r1 ≤ r ≤ r2 ∀ Ω, t constant.

Conditions for island

d

dr2
SQFT +

d

dr2
Sarea = 0

at finite r2 = r0

d2

dr 22
SQFT

∣∣∣∣
r2=r0

≥ − d2

dr 22
Sarea

∣∣∣∣
r2=r0

SQFT has information about the QFT spectrum and Sarea is purely geometric. Hence this
imposes constraints on the QFT spectrum in terms of background metric parameters.
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Replica trick

Gap in literature: Calculating SQFT and its
r−scaling is hard! Known results in

1+1 dim CFTs (Holzhey, Larsen, Wilczek (1994);

Calabrese, Cardy (2004))

2+1 dim (Casini, Huerta)

Universal features, results restricted to
CFTs in flat, vacuum state

Non-linear differential equation for RT
surface even in 2+1 dim.

We need EE on static background

SQFT = lim
q→1

Sq = lim
q→1

1

1− q
log(TrAρ

q
A)

= lim
q→1

1

1− q
(Wq − qW1)

tt

ϕq(x)

ϕ2(x)

ϕ1(x)

...

...

τ

τ

τ

Tr(ρqA) =
q∑

i=1

∑
ϕi(x)
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Scaling of EE on static background

We need scaling of EE on static background: Restrict to CFTs

δ(∆r)
δ

δ(∆r)
SQFT = −∆ΛSQFT

= −
∫

ddx

(
δΛgµν

δ

δgµν
+σ(x)β i (λ)

δ

δλi (x)

)(
lim
q→1

1

(1− q)
(Wq − qW1)

)

= lim
q→1

1

(q − 1)

(
1

2

∫

Mq

ddx
√
gq

(
δ∆rg

(q)
µν ⟨Tµν⟩q

)
− 1

2
q

∫

M1

ddx
√
g (δ∆rgµν ⟨Tµν⟩)

)

Under more general xµ → x ′µ = xµ + ξµ(xµ) we have δξi g
(q)
µν = Lξi g

(q)
µν
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Replica metric g
(q)
µν

Consider spatial entangling region x = x0 on a τ = τ0 slice.

Around the entangling boundary, replica boundary conditions imply a conical singularity.
Metric remains unaffected elsewhere. Therefore it is enough to consider the metric
expansion around the entangling boundary.

We use coordinates x − x0 = ρ cos(ψ), τ − τ0 = ρ sin(ψ); ρ ∈ [0,∞), ψ ∈ [0, 2πq)

ds2Mq
around boundary = gq

µνdx
µdxν |around Σ

=U(ρ, a)dρ2 + ρ2dψ2 + (γij + 2ρpc1−p cos(ψ)K1ij + 2ρpc1−p sin(ψ)K2ij)dy
idy j

+ Aiεacx
adxcdy i +O

(
x2
)

U|ρ=0 → q2, U|ρ>>a → 1
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Replica Stress Tensor ⟨Tµν⟩q and (q-1) expansion

The EE is equal to the difference Wq − qW1 at O(q − 1). We consider a systematic
O(q − 1) expansion which reveals the trivial terms in EE scaling. This picks up
contributions only due to the localised conical singularity(ies).

g (q)
µν = gµν + (q − 1)

(
g [1]
µν = (∂qg

(q)
µν )|q=1

)
+O

(
(q − 1)2

)
,

⟨Tµν⟩q = ⟨Tµν⟩+ (q − 1) ⟨Tµν⟩[1] +O
(
(q − 1)2

)

Replica stress tensor

∇(q)
µ ⟨Tµν⟩q = 0

⟨Tµ
µ⟩q = A[g (q)

µν ]

The (d + 1) equations completely determine
⟨Tµν⟩[1] in terms of ⟨Tµν⟩ for states with
same symmetry as the static background.

r
τ

gµν
g
(q)
µν |Σ g

(q)
µν |Σ

⟨Tµν⟩q − ⟨Tµν⟩

r1 r2
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Results for EE scaling in higher dim

EE scaling: General d, subregion, state

{−α(r2 − r1)}∂SQFT

∂r1
= lim

q→1

(
1

2

∫

Mq

ddx
√
g (δ∆rgµν) ⟨Tµν⟩[1]

)

Vacuum and thermal state (odd dim), planar boundary in flat space

⟨Tµ
ν⟩ vacuum

q, a=0 =
Cd(q)

ρd
diag((1− d), 1, 1, 1, ..., 1)

∆r
∂Sfinite, thermal

d dim

∂∆r
= πVol(Md−2)

{
C

[1]
d 2d−2

(∆r)d−2
+

p

4
(∆r)2

}

We can now use this to get explicit conditions for islands.
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QES, Islands - Some examples

Since scaling of SQFT with region depends on ⟨Tµν⟩ for QFTs on static backgrounds,
therefore demanding island imposes constraints on ⟨Tµν⟩.

Examples: QES in flat!

Thermal state: Odd dimension

C
[1]
d

(
2d−2

(∆x)d−2

)
+

p

4
(∆x)2 = 0 =⇒ x2 = x1 + 2

(
−C

[1]
d

p

)1/d

Vacuum: Spherical boundary - 4 dim

4a

∆r
+ 8πr2 = 0 =⇒ r2 = r1 ± 1

2

(
r 21 − 2a

π

)1/2
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Future work

Use scaling result to explicitly calculate EE scaling for more complicated states and
subregions (say with extrinsic curvature) on flat as well as more general static
spacetimes.

Extend to stationary spacetimes. Lack of spherical symmetry implies more
complicated subregions would reveal more dynamics. Defining equations of the
replica stress tensor will be related to static case by corresponding generating
transformations.

Spacetimes with no time translation symmetry. Timelike EE. Study in de-Sitter
spacetimes.

EE in Carrollian and celestial CFTs. Replica trick and scaling can be used on such
backgrounds too. Defining equations for replica stress tensor must respect the
symmetries of the degenerate metric and direction i.e., the Carroll structure. Does
this have a holographic proposal?

Explicit conditions on QFT spectrum for islands by making use of the scaling result.
Interpret these conditions in the holographic dual to black holes.

Use our result to test and refine the Quantum focussing conjecture.
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Thank you for your attention!
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