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Intro

I Quantity and quality of HepData content from LHC has been
steadily improving – including ad hoc “auxiliary data”

I BSM pheno community very happy about this – vision of an
automated limit re-setting toolchain with comprehensive data coverage

I Include both “SM measurements” & dedicated BSM search data

I Primary data faithfully recorded, modulo format details. Issue is
with secondary data:

(MC) background estimates
Correlation data

I All data needs to “automatically” flow from experiments,
through HepData, and into analysis tools
⇒ standardise formats and conventions for data & aux data

I Frames a potential work-plan to include in funding application
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Correlations in fits/limit setting
Many types of correlation:

I Between bins/SRs, introduced by experimental/theory
systematics

I Between bins/analyses, introduced by sharing events (or
normalisation)

I Between systematic (nuisance) params, induced by profile
fitting

Possible approaches to providing this information:
I full likelihood expression, e.g. HistFactory demo
I approximate: express as independent error sources,

correlated across bins — extensible
I approximate: simplified likelihoods: drop connection to error

sources, bkg systs only, express as (symm) bin covariance
Actively used by CMS: https://cds.cern.ch/record/2242860

Not 100% clear that correlations are necessary, but without them
there will always be questions of whether an analysis was too
optimistic or conservative
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Correlation formats: error sources vs. bin covariance
CMS 0` cov matrix – note log-scale!
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Error breakdown in a HepData record
NB. normal in Standard Model analyses

SL originally formalised as symm covariance
Simple to use: L(µ, ~θ) =

∏
i Pois(ni, µ, ~θ) ·Gaus(~θ,C)

Dimensionality of cov fixed: uniform approach, scales well. But
limited to symmetric errs and no correlations between analyses.

HepData doesn’t understand datasets semantics: would need “link”
metadata to reliably connect correlation datasets to primary datasets

Error-source representation more flexible: can construct cov matrix
Cij =

∑
e σiσj, or asymm by toy-sampling

Extensible! Supported already. HD preference. But. . .
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Logistical issues & extensions

I Need standard names, esp. to distinguish uncorr stat errors
I Also need groupings, e.g. to separate theory/MC errors from

experimental/detector resolutions⇒ future reinterpretations with
theory improvements. Easier with explicit cov matrices?

I Error-sources are naturally usable in an asymmetric way. But
current activity on use of skew moments to implement asymm
parametrisation: how to store this in HD?!
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Possibility for HD to have semantic understanding of correlations?
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MC and background data

I Correlations are the most technically complex demand, since the
data objects are semantically different from “normal” datasets

I Not the only requirement for scalable recasting, though:
background estimates are also crucial

I Typical BSM reinterpretations only have the capacity to generate
(maybe LO) signal events

I Backgrounds computed by experiments using vast MC datasets
with very complex and CPU-intensive high-sophistication
modelling: not reproducible, so needs to be published

I This has started, but – again – how to make HD (and its API)
semantically aware of what is data and what’s the
corresponding MC?
And background process breakdown? And pre-/post-fit? . . .
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